Effects of graphene oxide on the hydration behavior of ye’elimite


The research on the cement hydration with graphene oxide (GO) can provide a guidance for designing GO-modified cement-based materials. Ye’elimite is the dominant mineralogical phase in calcium sulfoaluminate cement. However, an in-depth understanding of GO on the hydration behavior of ye’elimite is still lacking. Here, we demonstrate the influences of GO on the hydration process and products of ye’elimite. Firstly, GO was successfully coated on the surface of ye’elimite and then the hydration development of ye’elimite was investigated by iso-thermal calorimetry and X-ray diffraction. The results revealed that the hydration time of ye’elimite moved up at first and delayed later with the increasing amounts of GO. The addition of GO could enhance the hydration degree of ye’elimite and promote the formation of monosulfate. The complexation effect of Ca2+ and –COOH group played a negative role in the formation of ettringite. This study provides a promising way for employing GO to regulate the hydration of ye’elimite.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1

    Park S, Lee KS, Bozoklu G, Cai WW, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–578

    CAS  Article  Google Scholar 

  2. 2

    Meharali M, Sadeghinezhad E, Latibari ST, Mehrali M, Togun H, Zubir MNM, Kazi SN, Metselaar HSC (2014) Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci 49:7156–7171. https://doi.org/10.1007/s10853-014-8424-8

    CAS  Article  Google Scholar 

  3. 3

    Hou DS, Lu ZY, Li XY, Ma HY, Li ZJ (2017) Reactive molecular dynamics and experimental study of graphene cement composites: structure, dynamics and reinforcement mechanisms. Carbon 115:188–208

    CAS  Article  Google Scholar 

  4. 4

    Li XG, Wei W, Hao Q, Yun HH (2015) Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement. J Phys Chem Solids 85:39–43

    CAS  Article  Google Scholar 

  5. 5

    Lv SH, Ma YJ, Qiu CC, Sun T, Liu JJ, Zhou QF (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater 49(12):121–127

    Article  Google Scholar 

  6. 6

    Lv SH, Deng LJ, Yang WQ, Zhou QF, Cui YY (2016) Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites. Cem Concr Compos 66:1–9

    CAS  Article  Google Scholar 

  7. 7

    Sharma S, Kothiyal NC, Chitkara M (2016) Enhanced mechanical performance of cement nanocomposite reinforced with graphene oxide synthesized from mechanically milled graphite and its comparison with carbon nanotubes reinforced nanocomposite. RSC Adv 6(106):103993–104009

    CAS  Article  Google Scholar 

  8. 8

    Wang M, Wang RM, Yao H, Farhan S, Zheng SR, Du CC (2016) Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Constr Build Mater 126:730–739

    CAS  Article  Google Scholar 

  9. 9

    Lu ZY, Hanif A, Sun GX, Liang R, Parthasarathy P, Li ZJ (2018) Highly dispersed graphene oxide electrodeposited carbon fiber reinforced cement-based materials with enhanced mechanical properties. Cem Concr Compos 87:220–228

    CAS  Article  Google Scholar 

  10. 10

    Mohammed A, Sanjayan JG, Duan WH, Nazari A (2015) Incorporating graphene oxide in cement composites: a study of transport properties. Constr Build Mater 84:341–347

    Article  Google Scholar 

  11. 11

    Mohammed A, Sanjayan JG, Nazari A, Al-Saadi NT (2018) The role of graphene oxide in limited long-term carbonation of cement-based matrix. Constr Build Mater 168:858–866

    CAS  Article  Google Scholar 

  12. 12

    Mohammed A, Sanjayan JG, Duan WH, Nazari A (2016) Graphene oxide impact on hardened cement expressed in enhanced freeze-thaw resistance. J Mater Civ Eng 28(9):04016072

    Article  Google Scholar 

  13. 13

    Lu C, Lu ZY, Li ZJ, Leung CKY (2016) Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites. Constr Build Mater 120:457–464

    CAS  Article  Google Scholar 

  14. 14

    Zhao L, Guo XL, Liu YY, Ge C, Guo LP, Shu X, Liu JP (2017) Synergistic effects of silica nanoparticles/polycarboxylate superplasticizer modified graphene oxide on mechanical behavior and hydration process of cement composites. RSC Adv 7(27):16688–16702

    CAS  Article  Google Scholar 

  15. 15

    Lin CQ, Wei W, Hu YH (2016) Catalytic behavior of graphene oxide for cement hydration process. J Phys Chem Solids 89(3):128–133

    CAS  Article  Google Scholar 

  16. 16

    Lu ZY, Li XY, Hanif A, Chen BM, Parthasarathy P, Yu JG, Li ZJ (2017) Early-age interaction mechanism between the graphene oxide and cement hydrates. Constr Build Mater 152:232–239

    CAS  Article  Google Scholar 

  17. 17

    Ghazizadeh S, Duffour P, Skipper NT, Yun B (2018) Understanding the behaviour of graphene oxide in Portland cement paste. Cem Concr Res 111:169–182

    CAS  Article  Google Scholar 

  18. 18

    Ghazizadeh S, Duffour P, Skipper NT, Billing M, Bai Y (2017) An investigation into the colloidal stability of graphene oxide nano-layers in alite paste. Cem Concr Res 99:116–128

    CAS  Article  Google Scholar 

  19. 19

    Winnefeld F, Barlag S (2010) Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite. J Therm Anal Calorim 101(3):949–957

    CAS  Article  Google Scholar 

  20. 20

    Bullerjahn F, Boehm-Courjault E, Zajac M, Ben Haha M, Scrivener KL (2018) Hydration reactions and stages of clinker composed mainly of stoichiometric ye’elimite. Cem Concr Res 116:120–133

    Article  Google Scholar 

  21. 21

    Liu JC, Wang N, Yu LJ, Karton A, Li W, Zhang WX, Guo FY, Hou LL et al (2017) Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat Commun 8(1):201

    Article  Google Scholar 

  22. 22

    Zhang HB, Wang JW, Yan Q, Zheng WG, Chen C, Yu ZZ (2011) Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21(14):5392–5397

    CAS  Article  Google Scholar 

  23. 23

    Wong CH, Jankovsky O, Sofer Z, Pumera M (2014) Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 77(10):508–517

    CAS  Article  Google Scholar 

  24. 24

    Chen WF, Yan LF (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2(4):559–563

    CAS  Article  Google Scholar 

  25. 25

    Dong CC, Jie L, Qiu BC, Shen B, Xing MY, Zhang JL (2018) Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and heavy metal ions. Appl Catal B Environ 222:146–156

    CAS  Article  Google Scholar 

  26. 26

    Shang Yd, Li Th, Hao L, Dang A, Zhang L, Yin YT, Xiong CY, Zhao TK (2010) Preparation and characterization of graphene derived from low-temperature and pressure promoted thermal reduction. Compos Part B Eng 99:106–111

    Article  Google Scholar 

  27. 27

    Kurokawa D, Takeda S, Colas M, Asaka T, Thomas P, Fukuda K (2014) Phase transformation of Ca4[Al6O12]SO4 and its disordered crystal structure at 1073 K. J Solid State Chem 215:265–270

    CAS  Article  Google Scholar 

  28. 28

    Sánchez-Herrero MJ, Fernández-Jiménez A, Palomo A (2013) C4A3Š hydration in different alkaline media. Cem Concr Res 46:41–49

    Article  Google Scholar 

  29. 29

    Carmona-Quiroga PM, Blanco-Varela MT (2013) Ettringite decomposition in the presence of barium carbonate. Cem Concr Res 52:140–148

    CAS  Article  Google Scholar 

  30. 30

    Jansen D, Spies A, Neubauer J, Ectors D, Goetz-Neunhoeffer F (2016) Studies on the early hydration of two modifications of ye’elimite with gypsum. Cem Concr Res 91:106–116

    Article  Google Scholar 

  31. 31

    Cuesta A, Álvarez-Pinazo G, Sanfélix SG, Peral I, Aranda MA, Torre AG (2014) Hydration mechanisms of two polymorphs of synthetic ye’elimite. Cem Concr Res 63:127–136

    CAS  Article  Google Scholar 

  32. 32

    Lu ZY, Hou DS, Hanif A, Hao WB, Sun GX, Li ZJ (2018) Comparative evaluation on the dispersion and stability of graphene oxide in water and cement pore solution by incorporating silica fume. Cem Concr Compos 94:33–42

    CAS  Article  Google Scholar 

  33. 33

    Li XY, Wang LH, Liu YQ, Li WG, Dong BQ, Duan WH (2018) Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength. Cem Concr Compos 92:145–154

    CAS  Article  Google Scholar 

  34. 34

    Li WG, Li XY, Shu JC, Yan ML, Duan WH, Shah SP (2017) Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Constr Build Mater 136:506–514

    CAS  Article  Google Scholar 

  35. 35

    Yang HB, Cui HZ, Tang WC, Li ZJ, Han NX, Feng X (2017) A critical review on research progress of graphene/cement based composites. Compos Part A Appl Sci Manuf 102:273–276

    CAS  Article  Google Scholar 

Download references


The financial supports were provided by the National Natural Science Foundation of China (Nos. 51772129, 51702118, U1806222), the start-up funding for high-level talents (University of Jinan, No. 511-1008395), A Project of Shandong Province Higher Educational Science and Technology Program (No. J18KA016), the National Key Research and Development Program (Grant No. 2016YFB0303505) and the 111 Project of International Corporation on Advanced Cement based Materials (No. D17001).

Author information



Corresponding author

Correspondence to Zhengmao Ye.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jing, G., Ye, Z., Cui, J. et al. Effects of graphene oxide on the hydration behavior of ye’elimite. J Mater Sci 54, 12582–12591 (2019). https://doi.org/10.1007/s10853-019-03801-4

Download citation