Skip to main content
Log in

Structures and dielectric properties of (Nb, Zn) co-doped SrTiO3 ceramics at various sintering temperatures

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of sintering temperatures on the phases, microstructures, defect structures and dielectric behaviors of the SrTi0.985(Nb2/3Zn1/3)0.015O3 ceramics have been systematically investigated. Giant permittivity (~ 10100) and low tangent loss (~ 0.035) are achieved in the ceramics sintered at 1500 °C. With an increase in sintering temperature, the grain size increases first and then stabilizes gradually, while the lattice constant increases first and then decreases. Higher sintering temperature is beneficial to the thermal stabilities of permittivity and tangent loss. Further investigations reveal that the giant permittivity mainly results from defect polarization. More Ti3+ ions and more oxygen vacancy-related defect complexes (\( {\text{Ti}}^{3 + } - {\text{V}}_{\text{O}}^{ \cdot \cdot } - {\text{Ti}}^{3 + } \) and \( {\text{V}}_{\text{O}}^{ \cdot \cdot } - {\text{Zn}}_{\text{Ti}}^{\prime \prime } \), etc.) are involved in the ceramics sintered at 1500 °C, contributing to the giant permittivity and low tangent loss. The presence of point defects breaks the local structural symmetry and distorts the oxygen octahedron. Dielectric properties are deteriorated at excessive sintering temperature due to the dissociation of defect complexes as well as the enhanced interfacial polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6: a
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Koumoto K, Wang Y, Zhang R et al (2010) Oxide thermoelectric materials: a nanostructuring approach. Annu Rev Mater Res 40:363–394. https://doi.org/10.1146/annurev-matsci-070909-104521

    Article  Google Scholar 

  2. Homes C, Thomas V (2013) Colossal permittivity materials: doping for superior dielectrics. Nat Mater 12:782–783. https://doi.org/10.1038/nmat3691

    Article  Google Scholar 

  3. Qi JL, Cao MH, Heath JP et al (2018) Improved breakdown strength and energy storage density of a Ce doped strontium titanate core by silica shell coating. J Mater Chem C 6:9130–9139. https://doi.org/10.1039/c8tc03181a

    Article  Google Scholar 

  4. Kotb HM, Ahmad MM, Alraheem NA (2017) Study of the structural, impedance spectroscopy and dielectric properties of Na and Si co-doped NiO ceramics. J Phys D Appl Phys 50:435304. https://doi.org/10.1088/1361-6463/aa89d8

    Article  Google Scholar 

  5. Chouket A, Cheikhrouhou WY, Cheikhrouhou A (2016) Structural, microstructural and dielectric studies in multiferroic LaSrNiO4−δ prepared by mechanical milling method. J Alloys Compd 662:467–474. https://doi.org/10.1016/j.jallcom.2015.12.002

    Article  Google Scholar 

  6. Prompa K, Swatsitang E, Putjuso T (2017) Very low loss tangent and giant dielectric properties of CaCu3Ti4O12 ceramics prepared by the sol–gel process. J Mater Sci Mater Electron 28:15033–150421. https://doi.org/10.1007/s10854-017-7377-5

    Article  Google Scholar 

  7. Luo BC, Wang XH, Tian EK (2018) Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: experimental and first-principles calculations. J Eur Ceram Soc 38:1562–1568. https://doi.org/10.1016/j.jeurceramsoc.2017.10.014

    Article  Google Scholar 

  8. Wei XH, Jie WJ, Yang ZB et al (2015) Colossal permittivity properties of Zn, Nb co-doped TiO2 with different phase structures. J Mater Chem C 3:11005–11010. https://doi.org/10.1039/c5tc02578h

    Article  Google Scholar 

  9. Burn I, Neirman S (1982) Dielectric properties of donor-doped polycrystalline SrTiO3. J Mater Sci 17:3510–3524. https://doi.org/10.1007/bf00752196

    Article  Google Scholar 

  10. Nachaithong T, Tuichai W, Kidkhunthod P et al (2017) Preparation, characterization, and giant dielectric permittivity of (Y3+ and Nb5+) co-doped TiO2 ceramics. J Eur Ceram Soc 37:3521–3526. https://doi.org/10.1016/j.jeurceramsoc.2017.04.040

    Article  Google Scholar 

  11. Tuichai W, Danwittayakul S, Srepusharawoot P et al (2017) Giant dielectric permittivity and electronic structure in (A3+, Nb5+) co-doped TiO2 (A = Al, Ga and In). Ceram Int 43:S265–S269. https://doi.org/10.1016/j.ceramint.2017.05.255

    Article  Google Scholar 

  12. Qi JL, Cao MH, Chen YY et al (2019) Cerium doped strontium titanate with stable high permittivity and low dielectric loss. J Alloys Compd 772:1105–1112. https://doi.org/10.1016/j.jallcom.2018.09.061

    Article  Google Scholar 

  13. Tkach A, Amaral JS, Amaral VS et al (2017) Dielectric spectroscopy and magnetometry investigation of Gd-doped strontium titanate ceramics. J Eur Ceram Soc 37:2391–2397. https://doi.org/10.1016/j.jeurceramsoc.2017.02.011

    Article  Google Scholar 

  14. Hu WB, Liu Y, Withers RL et al (2013) Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 12:821–826. https://doi.org/10.1038/nmat3691

    Article  Google Scholar 

  15. Wang ZJ, Wang ZH, Cao MH et al (2015) Structures and dielectric properties of Sr0.9775Sm0.015TiO3 ceramics sintered in N2. Ceram Int 41:12945–12949. https://doi.org/10.1016/j.ceramint.2015.06.137

    Article  Google Scholar 

  16. Wang ZJ, Cao MH, Zhang Q et al (2015) Dielectric relaxation in Zr-doped SrTiO3 ceramics sintered in N2 with giant permittivity and low dielectric loss. J Am Ceram Soc 98:476–482. https://doi.org/10.1111/jace.13288

    Article  Google Scholar 

  17. Tkach A, Amaral JS, Zlotnik S et al (2018) Enhancement of the dielectric permittivity and magnetic properties of Dy substituted strontium titanate ceramics. J Eur Ceram Soc 38:605–611. https://doi.org/10.1016/j.jeurceramsoc.2017.09.007

    Article  Google Scholar 

  18. He ZC, Cao MH, Zhou L et al (2018) Origin of low dielectric loss and giant dielectric response in (Nb + Al) co-doped strontium titanate. J Am Ceram Soc 101:5089–5097. https://doi.org/10.1111/jace.15762

    Article  Google Scholar 

  19. Tkach A, Vilarinho PM, Kholkin AL (2006) Dependence of dielectric properties of manganese-doped strontium titanate ceramics on sintering atmosphere. Acta Mater 54:5385–5391. https://doi.org/10.1016/j.actamat.2006.07.007

    Article  Google Scholar 

  20. Ren PR, He JJ, Wang X et al (2018) Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2. Scr Mater 146:110–114. https://doi.org/10.1016/j.scriptamat.2017.11.026

    Article  Google Scholar 

  21. Zhang L, Hao H, Zhang S et al (2017) Defect structure–electrical property relationship in Mn-doped calcium strontium titanate dielectric ceramics. J Am Ceram Soc 100:4638–4648. https://doi.org/10.1111/jace.14994

    Article  Google Scholar 

  22. Zhang L, Yao ZH, Lanagan MT et al (2018) Effect of oxygen treatment on structure and electrical properties of Mn-doped Ca0.6Sr0.4TiO3 ceramics. J Eur Ceram Soc 38:2534–2540. https://doi.org/10.1016/j.jeurceramsoc.2018.01.027

    Article  Google Scholar 

  23. Tkach A, Okhay O, Almeida A et al (2017) Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere. Acta Mater 130:249–260. https://doi.org/10.1016/j.actamat.2017.03.051

    Article  Google Scholar 

  24. Wang NN, Cao MH, He ZC et al (2016) Structural and dielectric behavior of giant permittivity SrNbxTi1−xO3 ceramics sintered in nitrogen atmosphere. Ceram Int 42:13593–13600. https://doi.org/10.1016/j.ceramint.2016.05.153

    Article  Google Scholar 

  25. Wang ZJ, Cao MH, Yao ZH et al (2014) Giant permittivity and low dielectric loss of SrTiO3 ceramics sintered in nitrogen atmosphere. J Eur Ceram Soc 34:1755–1760. https://doi.org/10.1016/j.jeurceramsoc.2014.01.015

    Article  Google Scholar 

  26. Chen A, Yu Z, Cross LE (2000) Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys Rev B 62:228–236. https://doi.org/10.1103/PhysRevB.62.228

    Article  Google Scholar 

  27. Tuichai W, Danwittayakul S, Chanlek N et al (2017) Effects of sintering temperature on microstructure and giant dielectric properties of (V plus Ta) co-doped TiO2 ceramics. J Alloys Compd 725:310–317. https://doi.org/10.1016/j.jallcom.2017.07.143

    Article  Google Scholar 

  28. Qi JL, Cao MH, Chen YY et al (2018) Effects of sintering temperature on microstructure and dielectric properties of Sr0.985 Ce0.01TiO3 ceramics. J Alloys Compd 762:950–956. https://doi.org/10.1016/j.jallcom.2018.05.140

    Article  Google Scholar 

  29. Pan WG, Cao MH, Qi JL et al (2019) Defect structure and dielectric behavior in SrTi1−x(Zn1/3Nb2/3)xO3 ceramics. J Alloys Compd 784:1303–1310. https://doi.org/10.1016/j.jallcom.2019.01.156

    Article  Google Scholar 

  30. Toby BH (2001) EXPGUI, A graphical user interface for GSAS. J Appl Crystallogr 34:210–213. https://doi.org/10.1107/S0021889801002242

    Article  Google Scholar 

  31. Thongyong N, Tuichai W, Chanlek N et al (2017) Effect of Zn2+ and Nb5+ co-doping ions on giant dielectric properties of rutile-TiO2 ceramics. Ceram Int 43:15466–15471. https://doi.org/10.1016/j.ceramint.2017.08.093

    Article  Google Scholar 

  32. Qi JL, Cao MH, Chen YY et al (2019) Origin of high dielectric permittivity and low dielectric loss of Sr0.985Ce0.01TiO3 ceramics under different sintering atmospheres. J Alloys Compd 782:51–58. https://doi.org/10.1016/j.jallcom.2018.12.078

    Article  Google Scholar 

  33. Moreira RL, Lobo RP, Subodh G et al (2007) Optical phonon modes and dielectric behavior of Sr1−3x/2CexTiO3 microwave ceramics. Chem Mater 26:6548–6554. https://doi.org/10.1021/cm7024747

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC-Guangdong Joint Funds of the Natural Science Foundation of China (No. U1601209), National Key Basic Research Program of China (973 Program) (No. 2015CB654601), Technical Innovation Special Program of Hubei Province (2017AHB055), State Key Laboratory of Advanced Technology Materials Synthesis and Processing (Wuhan University of Technology) (2018-KF-11), National Natural Science Foundation of China (51872213) and the Fundamental Research Funds for the Central Universities (195101007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghe Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Cao, M., Diao, C. et al. Structures and dielectric properties of (Nb, Zn) co-doped SrTiO3 ceramics at various sintering temperatures. J Mater Sci 54, 12401–12410 (2019). https://doi.org/10.1007/s10853-019-03793-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03793-1

Navigation