Skip to main content
Log in

Structural design of MoS2-based coatings toward high humidity and wide temperature

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The lubrication of pure MoS2 coating for the application in air environment has been commonly limited owing to its loose structure, low hardness, and high humidity sensitivity. To overcome such drawbacks, MoS2/Pb–Ti composite and multilayer coatings were deposited by unbalanced magnetron sputtering system. And subsequently, the oxidation resistance and tribological properties of such MoS2-based coatings were studied after 30 days of exposure under different temperatures (ranging from 20 to 80 °C) with the relative humidity of 80% (RH 80%). We found that pure MoS2 showed poor oxidation resistance after 30 days of exposure and presented high and fluctuating coefficient of friction (COF), leading to the early failure of the coating. In contrast, the oxidation resistance of MoS2 was improved significantly by Pb–Ti co-doping and multilayer design. What is more, the low COF and wear rate were also obtained from the composite and multilayer coatings even after 30 days of exposure at 80 °C, RH 80%, which was related to the compact structure and higher values of hardness to elastic modulus (H/E). More importantly, the high density of interfaces and a relatively strong (002) preferred orientation in the multilayer coating were beneficial to reduce the wear and COF, causing better tribological performance than others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Donnet C, Erdemir A (2004) Solid lubricant coatings: recent developments and future trends. Tribol Lett 17:389–397

    Article  CAS  Google Scholar 

  2. Chhowalla M, Amaratunga GAJ (2000) Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407:164–167

    Article  CAS  Google Scholar 

  3. Wang P, Qiao L, Xu J, Li WX, Liu WM (2015) Erosion mechanism of MoS2-based films exposed to atomic oxygen environments. ACS Appl Mat Interfaces 7:12943–12950

    Article  CAS  Google Scholar 

  4. Winer W (1967) Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10:422–452

    Article  CAS  Google Scholar 

  5. Steinmann M, Müller A, Meerkamm H (2004) A new type of tribological coating for machine elements based on carbon, molybdenum disulphide and titanium diboride. Tribol Int 37:879–885

    Article  CAS  Google Scholar 

  6. Polcar T, Cavaleiro A (2011) Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon. Surf Coat Technol 206:686–695

    Article  CAS  Google Scholar 

  7. Renevier NM, Hamphire J, Fox VC, Witts J, Allen T, Teer DG (2001) Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings. Surf Coat Technol 142:67–77

    Article  Google Scholar 

  8. Voevodin AA, Fitz TA, Hu JJ, Zabinski JS (2002) Nanocomposite tribological coatings with chameleon surface adaptation. J Vac Sci Technol, A 20:1434–1444

    Article  CAS  Google Scholar 

  9. Scharf TW, Kotula PG, Prasad SV (2010) Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater 58:4100–4109

    Article  CAS  Google Scholar 

  10. Wang DY, Chang CL, Chen ZY, Ho WY (1999) Microstructural and tribological characterization of MoS2–Ti composite solid lubricating films. Surf Coat Technol 120:629–635

    Article  Google Scholar 

  11. Savan A, Simmonds MC, Huang Y, Constable CP, Creasey S, Gerbig Y, Haefke H, Lewis DB (2005) Effects of temperature on the chemistry and tribology of co-sputtered MoSx-Ti composite thin films. Thin Solid Films 489:137–144

    Article  CAS  Google Scholar 

  12. Renevier NM, Fox VC, Teer DG, Hampshire J (2000) Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf Coat Technol 127:24–37

    Article  CAS  Google Scholar 

  13. Arslan E, Bülbül F, Alsaran A, Celik A, Efeoglu I (2005) The effect of deposition parameters and Ti content on structural and wear properties of MoS2–Ti coatings. Wear 259:814–819

    Article  CAS  Google Scholar 

  14. Wang X, Xing Y, Ma S, Zhang X, Xu K, Teer DG (2007) Microstructure and mechanical properties of MoS2/titanium composite coatings with different titanium content. Surf Coat Technol 201:5290–5293

    Article  CAS  Google Scholar 

  15. Qin X, Ke P, Wang A, Kim KH (2013) Microstructure, mechanical and tribological behaviors of MoS2-Ti composite coatings deposited by a hybrid HIPIMS method. Surf Coat Technol 228:275–281

    Article  CAS  Google Scholar 

  16. Banerji A, Bhowmick S, Alpas AT (2017) Role of temperature on tribological behaviour of Ti containing MoS2 coating against aluminum alloys. Surf Coat Technol 314:2–12

    Article  CAS  Google Scholar 

  17. Wahl KJ, Dunn DN, Singer IL (1999) Wear behavior of Pb–Mo–S solid lubricating coatings. Wear 230:175–183

    Article  CAS  Google Scholar 

  18. Dvorak SD, Wahl KJ, Singer IL (2007) In situ analysis of third body contributions to sliding friction of a Pb–Mo–S coating in dry and humid air. Tribol Lett 28:263–274

    Article  CAS  Google Scholar 

  19. Li H, Zhang G, Wang L (2016) Low humidity-sensitivity of MoS2/Pb nanocomposite coatings. Wear 350:1–9

    Article  CAS  Google Scholar 

  20. Scharf TW, Goeke RS, Kotula PG, Prasad SV (2013) Synthesis of Au–MoS2 nanocomposites: thermal and friction-induced changes to the structure. ACS Appl Mat Interfaces 5:11762–11767

    Article  CAS  Google Scholar 

  21. Singh H, Mutyala KC, Evans RD, Doll GL (2015) An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments. Surf Coat Technol 284:281–289

    Article  CAS  Google Scholar 

  22. Ma G, Xu B, Wang H, Wang X, Li G, Zhang S (2013) Research on the microstructure and space tribology properties of electric-brush plated Ni/MoS2–C composite coating. Surf Coat Technol 221:142–149

    Article  CAS  Google Scholar 

  23. Mikhailov S, Savan A, Pflüger E, Knoblauch L, Hauert R, Simmonds M, Van Swygenhoven H (1998) Morphology and tribological properties of metal (oxide)-MoS2 nanostructured multilayer coatings. Surf Coat Technol 105:175–183

    Article  CAS  Google Scholar 

  24. Ding XZ, Zeng XT, He XY, Chen Z (2010) Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere. Surf Coat Technol 205:224–231

    Article  CAS  Google Scholar 

  25. Su YL, Kao WH (2003) Tribological behaviour and wear mechanism of MoS2–Cr coatings sliding against various counterbody. Tribol Int 36:11–23

    Article  CAS  Google Scholar 

  26. Zhang X, Xu J, Chai L, He T, Yu F, Wang P (2017) Carbon and nitrogen co-doping self-assembled MoS2 multilayer films. Appl Surf Sci 406:30–38

    Article  CAS  Google Scholar 

  27. Rabinowicz E (1971) The determination of the compatibility of metals through static friction tests. ASLE Trans 14:198–205

    Article  CAS  Google Scholar 

  28. Ren S, Li H, Cui M, Wang L, Pu J (2017) Functional regulation of Pb–Ti/MoS2 composite coatings for environmentally adaptive solid lubrication. Appl Surf Sci 401:362–372

    Article  CAS  Google Scholar 

  29. Hilton MR, Bauer R, Didziulis SV, Dugger MT, Keem JM, Scholhamer J (1992) Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf Coat Technol 53:13–23

    Article  CAS  Google Scholar 

  30. Simmonds M, Savan A, Van Swygenhoven H (1998) Structural, morphological, chemical and tribological investigations of sputter deposited MoS2/metal multilayer coatings. Surf Coat Technol 108:340–344

    Article  Google Scholar 

  31. Zhang P, Fang Y, Dai S, Fu Y, Zhang M, Huang M, Hu J (2016) Preparation and characterization of MoS2–TiL/MoS2–TiH nano multilayer coating with excellent wear properties. MaterLett 173:35–38

    CAS  Google Scholar 

  32. Watanabe S, Noshiro J, Miyake S (2004) Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf Coat Technol 183:347–351

    Article  CAS  Google Scholar 

  33. Li H, Xie M, Zhang G, Fan X, Li X, Zhu M, Wang L (2018) Structure and tribological behavior of Pb–Ti/MoS2 nanoscaled multilayer films deposited by magnetron sputtering method. Appl Surf Sci 435:48–54

    Article  CAS  Google Scholar 

  34. Shang K, Zheng S, Ren S, Pu J, He D, Liu S (2018) Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction. Appl Surf Sci 437:233–244

    Article  CAS  Google Scholar 

  35. Jia J, Niu YS, Wu J, Yu ZM (2014) Improvement of properties of TiN coating by optimising microstructural design. Surf Eng 30:36–40

    Article  CAS  Google Scholar 

  36. Teer DG, Hampshire J, Fox V, Bellido-Gonzalez V (1997) The tribological properties of MoS2/metal composite coatings deposited by closed field magnetron sputtering. Surf Coat Technol 94:572–577

    Article  Google Scholar 

  37. Zhang X, Vitchev RG, Lauwerens W, Stals L, He J, Celis JP (2001) Effect of crystallographic orientation on fretting wear behaviour of MoSx coatings in dry and humid air. Thin Solid Films 396:69–77

    Article  CAS  Google Scholar 

  38. Fleischauer PD (1984) Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans 27:82–88

    Article  CAS  Google Scholar 

  39. Wang X, Zhang Z, Chen Y, Qu Y, Lai Y, Li J (2014) Morphology-controlled synthesis of MoS2 nanostructures with different lithium storage properties. J Alloys Compd 600:84–90

    Article  CAS  Google Scholar 

  40. Wu Y, Li H, Ji L, Ye Y, Chen J (2013) A long-lifetime MoS2/a-C: H nanoscale multilayer film with extremely low internal stress. Surf Coat Technol 236:438–443

    Article  CAS  Google Scholar 

  41. Gao X, Fu Y, Jiang D, Wang D, Xu S, Liu W, Weng L, Yang J, Sun J, Hu M (2018) Constructing WS2/MoS2 nano-scale multilayer film and understanding its positive response to space environment. Surf Coat Technol 353:8–17

    Article  CAS  Google Scholar 

  42. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2003) NIST X-ray photoelectron spectroscopy database, version 3.3. National Institute of Standards and Technology, USA. https://doi.org/10.18434/T4T88K

  43. Bertóti I, Mohai M, Renevier NM, Szilágyi E (2000) XPS investigation of ion beam treated MoS2-Ti composite coatings. Surf Coat Technol 125:173–178

    Article  Google Scholar 

  44. Pu J, Ren S, Lu Z, Wang L (2016) A feasible multilayer structure design for solid lubricant coatings in a lunar environment. RSC Adv 6:65504–65517

    Article  CAS  Google Scholar 

  45. Khadem M, Penkov OV, Yang HK, Kim DE (2017) Tribology of multilayer coatings for wear reduction: a review. Friction 5:248–262

    Article  CAS  Google Scholar 

  46. Martinez E, Sanjines R, Karimi A, Esteve J, Lévy F (2004) Mechanical properties of nanocomposite and multilayered Cr–Si–N sputtered thin films. Surf Coat Technol 180:570–574

    Article  CAS  Google Scholar 

  47. Teer DG (2001) New solid lubricant coatings. Wear 251:1068–1074

    Article  Google Scholar 

  48. Flores M, Muhl S, Huerta L, Andrade E (2005) The influence of the period size on the corrosion and the wear abrasion resistance of TiN/Ti multilayers. Surf Coat Technol 200:1315–1319

    Article  CAS  Google Scholar 

  49. Musil J (2000) Hard and superhard nanocomposite coatings. Surf Coat Technol 125:322–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Science Fund for Distinguished Young Scholars of China (Grant No. 51825505) and the National Natural Science Foundation of China (Grant Nos. U1737214 and 51775539) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LZ17E050004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Wang or Jibin Pu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 880 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Shang, K., Cui, M. et al. Structural design of MoS2-based coatings toward high humidity and wide temperature. J Mater Sci 54, 11889–11902 (2019). https://doi.org/10.1007/s10853-019-03754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03754-8

Navigation