Skip to main content

Advertisement

Log in

Modification of porous carbon with nitrogen elements to enhance the capacitance of supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A porous carbon precursor is prepared by modifying polyvinylidene fluoride with nitrogen via a chemical polyreaction and then introducing mesopores using the soft-template method. After carbonization at the appropriate temperature, the obtained carbon material could be applied in supercapacitors without further treatment. The resulting material exhibits not only a comparatively stable nitrogen content that is very close to the nitrogen content of its precursor but also an effective hierarchical porous structure (~ 0.68 and ~ 4 nm). The large specific surface area of the carbon material (up to 1688 m2 g−1) is also an important factor influencing its excellent electrochemical performance. When tested using 6 M KOH as an electrolyte in a three-electrode system, CN-900 exhibits a specific capacitance of 355.6 F g−1 at 1 A g−1. When tested using the same electrolyte in a two-electrode system, CN-900 shows a specific capacitance of 84.08 F g−1 at 0.5 A g−1. In addition, the carbon material can maintain 98.4% capacitance after 8000 charge/discharge cycles at a current density of 2 A g−1. The performance of CN-900 is further tested in a two-electrode solid-state supercapacitor with sulfuric acid/polyvinyl alcohol as the electrolyte, and a specific capacitance of 90.31 F g−1 is observed at 1 A g−1. Therefore, the nitrogen-modified porous carbon is a very promising material with practical applications in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    CAS  Google Scholar 

  2. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:157–164

    Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    CAS  Google Scholar 

  4. Shukla AK, Sampath S, Vijayamohanan K (2000) Electrochemical supercapacitors: energy storage beyond batteries. Curr Sci 79:1656–1661

    CAS  Google Scholar 

  5. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  Google Scholar 

  6. Zhou Y, Candelaria SL, Liu Q, Huang Y (2014) Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. J Mater Chem A 2:8472–8482

    CAS  Google Scholar 

  7. Hulicova Jurcakova D, Seredych M, Gao QL, Bandosz TJ (2009) Combined effect of nitrogen and oxygen containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447

    CAS  Google Scholar 

  8. Hulicovajurcakova D, Puziy AM, Poddubnaya OI, Suárezgarcía F, Tascón JMD, Gao QL (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131:5026

    CAS  Google Scholar 

  9. Wu HB, Pang H, Lou XW (2013) Facile synthesis of mesoporous Ni Co O hierarchical structures for high-performance supercapacitors. Energy Environ Sci 6:3619–3626

    CAS  Google Scholar 

  10. Wang J, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B (2018) One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127:85–92

    CAS  Google Scholar 

  11. Wang J, Liu H, Zhang X, Shao M, Wei B (2018) Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. J Mater Chem A 6:17653–17661

    CAS  Google Scholar 

  12. Hsia B, Kim MS, Carraro C, Maboudian R (2013) Cycling characteristics of high energy density, electrochemically activated porous-carbon supercapacitor electrodes in aqueous electrolytes. J Mater Chem A 1:10518–10523

    CAS  Google Scholar 

  13. Chen H, Liu D, Shen Z, Bao B, Zhao S, Wu L (2015) Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochim Acta 180:241–251

    CAS  Google Scholar 

  14. Zhu X, Yu S, Xu K, Zhang Y, Zhang L, Lou G, Wu Y, Zhu E, Chen H, Shen Z, Bao B, Fu S (2018) Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem Eng Sci 181:36–45

    CAS  Google Scholar 

  15. Yu S, Zhu X, Lou G, Wu Y, Xu K, Zhang Y, Zhang L, Zhu E, Chen H, Shen Z, Bao B, Fu S (2017) Sustainable hierarchical porous biomass carbons enriched with pyridinic and pyrrolic nitrogen for asymmetric supercapacitor. Mater Des 149:184–193

    Google Scholar 

  16. Zhang Y, Yu S, Lou G, Shen Y, Chen H, Shen Z, Zhao S, Zhang J, Chai S, Zou Q (2017) Review of macroporous materials as electrochemical supercapacitor electrodes. J Mater Sci 52:11201–11228. https://doi.org/10.1007/s10853-017-0955-3

    Article  CAS  Google Scholar 

  17. Wang J, Kang F, Wei B (2015) Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog Mater Sci 74:51–124

    CAS  Google Scholar 

  18. Wang J, Zhang Z, Zhang X, Yin X, Li X, Liu X, Kang F, Wei B (2017) Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39:647–653

    Google Scholar 

  19. Wang J, Liu H, Liu H, Hua W, Shao M (2018) Interfacial constructing flexible V2O5@polypyrrole core-shell nanowire membrane with superior supercapacitive performance. ACS Appl Mater Interfaces 10:18816–18823

    CAS  Google Scholar 

  20. Li X, Zhang L, He G (2016) Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor. Carbon 99:514–522

    CAS  Google Scholar 

  21. Guo H, Gao Q (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sour 186:551–556

    CAS  Google Scholar 

  22. Zhou Y, Ma R, Candelaria SL, Wang J, Liu Q, Uchaker E, Li P, Chen Y, Cao G (2016) Phosphorus/sulfur co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. J Power Sour 314:39–48

    CAS  Google Scholar 

  23. Li X, Wei F, Sui Y, Qi J, He Y, Meng Q (2016) Au&Co core-shell nanoparticles capped with porous carbon: high performance materials for supercapacitor applications. Mater Lett 183:408–412

    CAS  Google Scholar 

  24. Senthilkumar B, Khan Z, Park S, Kim K, Ko H, Kim Y (2015) Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J Mater Chem A 3:21553–21561

    CAS  Google Scholar 

  25. Yu GH, Hu LB, Liu N, Wang HL, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442

    CAS  Google Scholar 

  26. Guan C, Liu J, Cheng C, Li H, Li X, Zhou W, Zhang H, Fan HJ (2011) Hybrid structure of cobalt monoxide nanowire@nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy Environ Sci 4:4496–4499

    CAS  Google Scholar 

  27. Zhu J, Xu Y, Zhang Y, Feng T, Wang J, Mao S, Xiong L (2016) Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon 107:638–645

    CAS  Google Scholar 

  28. Wang D, Fang G, Geng G, Ma J (2017) Unique porous carbon constructed by highly interconnected naonowalls for high-performance supercapacitor in organic electrolyte. Mater Lett 189:50–53

    CAS  Google Scholar 

  29. Barzegar F, Bello A, Momodu D, Madito MJ, Dangbegnon J, Manyala N (2016) Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. J Power Sour 309:245–253

    CAS  Google Scholar 

  30. Chen J, Wei H, Chen H, Yao W, Lin H, Han S (2018) N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim Acta 271:49–57

    CAS  Google Scholar 

  31. Schopf D, Es-Souni M (2017) Thin film nanocarbon composites for supercapacitor applications. Carbon 115:449–459

    CAS  Google Scholar 

  32. Xue T, Xu CL, Zhao DD, Li XH, Li HL (2007) Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J Power Sour 164:953–958

    CAS  Google Scholar 

  33. Guo N, Li M, Sun X, Wang F, Yang R (2017) Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem 19:2595–2602

    CAS  Google Scholar 

  34. Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sour 341:309–317

    CAS  Google Scholar 

  35. Boccaccio T, Bottino A, Capannelli G, Piaggio P (2002) Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci 210:315–329

    CAS  Google Scholar 

  36. Liu J, Shen X, Zhao Y, Chen L (2013) Acryloylmorpholine-grafted PVDF membrane with improved protein fouling resistance. Ind Eng Chem Res 52:18392–18400

    CAS  Google Scholar 

  37. Yu JZ, Zhu LP, Zhu BK, Xu YY (2011) Poly(N-isopropylacrylamide) grafted poly(vinylidene fluoride) copolymers for temperature-sensitive membranes. J Membr Sci 366:176–183

    CAS  Google Scholar 

  38. Rivas BL, Maureira A, Geckeler KE (2006) Novel water-soluble acryloylmorpholine copolymers: synthesis, characterization, and metal ion binding properties. J Appl Polym Sci 101:180–185

    CAS  Google Scholar 

  39. Chang Y, Shih YJ, Ko CY, Jhong JF, Liu YL, Wei TC (2011) Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation. Langmuir 27:5445–5455

    CAS  Google Scholar 

  40. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguezreinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  41. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261

    CAS  Google Scholar 

  42. Guo S, Shen H, Tie Z, Zhu S, Shi P, Fan J, Xu Q, Min Y (2017) Three-dimensional cross-linked polyaniline fiber/N-doped porous carbon with enhanced electrochemical performance for high-performance supercapacitor. J Power Sour 359:285–294

    CAS  Google Scholar 

  43. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518

    CAS  Google Scholar 

  44. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King’Ondu CK, Holt CM, Olsen BC (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141

    CAS  Google Scholar 

  45. Liu Z, Xiao K, Guo H, Ning X, Hu A, Tang Q, Fan B, Zhu Y, Chen X (2017) Nitrogen-doped worm-like graphitized hierarchical porous carbon designed for enhancing area-normalized capacitance of electrical double layer supercapacitors. Carbon 117:163–173

    CAS  Google Scholar 

  46. Shan C, Zhao W, Lu XL, O’Brien DJ, Li Y, Cao Z, Elias AL, Cruzsilva R, Terrones M, Wei B (2013) Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. Nano Lett 13:5514–5520

    CAS  Google Scholar 

  47. Yang M, Zhou Z (2017) Recent breakthroughs in supercapacitors boosted by {Wei, 2017#233}nitrogen-rich porous carbon materials. Adv Sci 4:1600382–1600408

    Google Scholar 

  48. Liu B, Yang M, Chen H, Liu Y, Yang D, Li H (2018) Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J Power Sour 397:1–10

    CAS  Google Scholar 

  49. Liu Z, Mi J, Yang Y, Tan X, Lv C (2014) Easy synthesis of phosphorus-incorporated three-dimensionally ordered macroporous carbons with hierarchical pores and their use as electrodes for supercapacitors. Electrochim Acta 115:206–215

    CAS  Google Scholar 

  50. Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194

    CAS  Google Scholar 

  51. Wei H, Chen H, Fu N, Chen J, Lan G, Qian W, Liu Y, Lin H, Han S (2017) Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim Acta 231:403–411

    CAS  Google Scholar 

  52. Wei H, Chen J, Fu N, Chen H, Lin H, Han S (2018) Biomass-derived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity. Electrochim Acta 266:161–169

    CAS  Google Scholar 

  53. Wang J, Liu H, Zhou R, Liu X, Wei B (2019) Onion-like nanospheres organized by carbon encapsulated few-layer MoS2 nanosheets with enhanced lithium storage performance. J Power Sour 413:327–333

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported from the National Natural Science Foundation of China (Project Numbers 21606151, 21504057 and 21707092), Shanghai Excellent Technology Leaders Program (Project Number 17XD1424900), Shanghai Leading Talent Program (Project Number 017), Science and Technology Commission of Shanghai Municipality Project (Project Number 18090503800), Shanghai Natural Science Foundation of Shanghai (Project Numbers 17ZR1441700 and 14ZR1440500), Collaborative Innovation Fund of SIT (Project Number XTCX2015-9), Professor of Special Appointment at Shanghai Institutions of Higher Learning (Eastern Scholar), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201680). Moreover, I am very grateful to my senior schoolmate, Wei Huanming, for helping and supporting my learning and research all the time. And I specially thank my junior schoolmate, Liu Fengru, to assist me in chemical synthesis experiment about this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hualin Lin or Sheng Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chang, B., Liu, F. et al. Modification of porous carbon with nitrogen elements to enhance the capacitance of supercapacitors. J Mater Sci 54, 11959–11971 (2019). https://doi.org/10.1007/s10853-019-03748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03748-6

Navigation