Skip to main content

Advertisement

Log in

One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bimetallic sulfides are widely used in supercapacitor electrode materials. However, the sample preparation is usually complicated, and the followed performance is not very desirable generally. In this work, we report a one-step solvothermal method to synthesize Ni–Co–SX nanostructure which stacked into a pine cone structure. Noticeably, the optimized Ni–Co–S4 exhibited a high specific capacitance of 2215 F g−1 at a current density of 0.5 A g−1 and the capacitor retention rate is close to 90.16% after 10,000 cycles, which indicates that the cycle performance is superior. Moreover, Ni–Co–S4 can be used as the anode material coupled with cathodic activated carbon to assemble a high-performance asymmetric supercapacitor, revealing a high energy density of 36.6 Wh kg−1, a highest power density of 8.5 kW kg−1 with a capacitance retention of 85.06% after 10,000 cycles and an ability of lighting an LED for up to 15 min. The findings have implications to the design and control of the electrode materials for energy storage with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat Energy 2:16202

    CAS  Google Scholar 

  2. Yang P, Qu X, Liu K, Duan J, Li J, Chen Q, Xue G, Xie W, Xu Z, Zhou J (2018) Electrokinetic supercapacitor for simultaneous harvesting and storage of mechanical energy. ACS Appl Mater Interfaces 10:8010–8015

    CAS  Google Scholar 

  3. Zou C, Zhao Q, Zhang G, Xiong B (2016) Energy revolution: from a fossil energy era to a new energy era ☆. Natl Gas Ind B 3:1–11

    Google Scholar 

  4. Jie Y, Jia X, Zou J, Chen Y, Wang N, Wang ZL, Cao X (2018) Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv Energy Mater 8:1703133

    Google Scholar 

  5. Liu Z, Chen Y, Zhuo R, Jia H (2017) Energy storage capacity optimization for autonomy microgrid considering CHP and EV scheduling. Appl Energy 210:1113–1125

    Google Scholar 

  6. Cheng Y, Zhang H, Lu S, Varanasi CV, Liu J (2013) Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale 5:1067–1073

    CAS  Google Scholar 

  7. Qin T, Peng S, Hao J, Wen Y, Wang Z, Wang X, He D, Zhang J, Hou J, Cao G (2017) Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode. Adv Energy Mater 7:1700409

    Google Scholar 

  8. Wang F, Zuo Z, Shang H, Zhao Y, Li Y (2019) Ultrafastly interweaving graphdiyne nanochain on arbitrary substrates and its performance as a supercapacitor electrode. ACS Appl Mater Interfaces 11:2599–2607

    CAS  Google Scholar 

  9. Lu C, Huang YH, Wu YJ, Li J, Cheng JP (2018) Camellia pollen-derived carbon for supercapacitor electrode material. J Power Sources 394:9–16

    CAS  Google Scholar 

  10. Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438

    CAS  Google Scholar 

  11. Jia H, Cai Y, Lin J, Liang H, Qi J, Cao J, Feng J, Fei WD (2018) Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Advanced Science 5:1700887

    Google Scholar 

  12. Sun H, Ma Z, Qiu Y, Liu H, Gao GG (2018) Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction. Small 14:1800294

    Google Scholar 

  13. Yang S, Liu Y, Hao Y, Yang X, Iii WAG, Zhang XL, Cao B (2018) Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv Sci 5:1700659

    Google Scholar 

  14. Wu X, Meng L, Wang Q, Zhang W, Wang Y (2017) A flexible asymmetric fibered-supercapacitor based on unique Co3O4@PPy core-shell nanorod arrays electrode. Chem Eng J 327:193–201

    CAS  Google Scholar 

  15. Qu D (2002) Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 109:403–411

    CAS  Google Scholar 

  16. Teng Z, Wan L, Sun S, Qi C, Jiao S, Xia Q, Hui X (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29:1604167

    Google Scholar 

  17. Xu C, Li Z, Yang C, Zou P, Xie B, Lin Z, Zhang Z, Li B, Kang F, Wong CP (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:4105–4110

    CAS  Google Scholar 

  18. Du J, Li K, Qian Y, Yang M, Wang H, He W, Harnchana V (2016) Porous NiCo2S4 networks as electrodes for electrochemical supercapacitors. NANO 11:1650133

    CAS  Google Scholar 

  19. Yu XY, Yu L, Lou XW (2016) Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 6:1501333

    Google Scholar 

  20. Zha D, Fu Y, Zhang L, Zhu J, Wang X (2018) Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life. J Power Sources 378:31–39

    CAS  Google Scholar 

  21. Mohamed SG, Hussain I, Shim JJ (2018) One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10:6620–6628

    CAS  Google Scholar 

  22. Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8:9531–9541

    CAS  Google Scholar 

  23. Zhu B, Wang Z, Ding S, Chen J, Lou XD (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. Rsc Adv 1:397–400

    CAS  Google Scholar 

  24. Chou S-W, Lin J-Y (2013) Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. J Electrochem Soc 160:178–182

    Google Scholar 

  25. Liu X, Qi X, Zhang Z, Ren L, Liu Y, Meng L, Huang K, Zhong J (2014) One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors. Ceram Int 40:8189–8193

    CAS  Google Scholar 

  26. Patil AM, Lokhande AC, Shinde PA et al (2018) Vertically aligned NiS nano-flakes derived from hydrothermally prepared Ni(OH)2 for high performance supercapacitor. J Energy Chem 27:791–800

    Google Scholar 

  27. He J, Guo C, Zhou S et al (2018) Dual carbon-modified nickle sulfide composites toward high-performance electrodes for supercapacitors. Inorgan Chem Front 6:226–232

    Google Scholar 

  28. Mohammadi A, Arsalani N, Tabrizi AG et al (2018) Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem Eng J 334:66–80

    CAS  Google Scholar 

  29. Zhao Y, Shi Z, Lin T et al (2019) Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. J Power Sources 412:321–330

    CAS  Google Scholar 

  30. Meng X, Deng J, Zhu J et al (2016) Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors. Sci Rep 6:321–330

    Google Scholar 

  31. Wan H, Ji X, Jiang J, Yu J, Miao L, Zhang L, Bie S, Chen H, Ruan Y (2013) Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J Power Sources 243:396–402

    CAS  Google Scholar 

  32. Li Y, Liu S, Chen W, Li S, Shi L, Zhao Y (2017) Facile synthesis of flower-like cobalt sulfide hierarchitectures with superior electrode performance for supercapacitors. J Alloy Compd 712:139–146

    CAS  Google Scholar 

  33. Yang J, Yu C, Liang S, Li S, Huang H, Han X, Zhao C, Song X, Hao C, Ajayan PM (2016) Bridging of ultrathin NiCo2O4 nanosheets and graphene with polyaniline: a theoretical and experimental study. Chem Mater 28:5855–5863

    CAS  Google Scholar 

  34. Nguyen VH, Lamiel C, Shim JJ (2015) Hierarchical mesoporous graphene@Ni–Co–S arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 161:351–357

    CAS  Google Scholar 

  35. Xu S, Su C, Wang T, Ma Y, Hu J, Hu J, Hu N, Su Y, Zhang Y, Yang Z (2017) One-step electrodeposition of nickel cobalt sulfide nanosheets on Ni nanowire film for hybrid supercapacitor. Electrochim Acta 259:617–625

    Google Scholar 

  36. Yang J, Yu C, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J (2016) Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 9:1299–1307

    CAS  Google Scholar 

  37. Mei L, Yang T, Xu C, Zhang M, Chen L, Li Q, Wang T (2014) Hierarchical mushroom-like CoNi2S 4 arrays as a novel electrode material for supercapacitors. Nano Energy 3:36–45

    CAS  Google Scholar 

  38. Wei C, Zhan N, Tao J, Pang S, Zhang L, Cheng C, Zhang D (2018) Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl Surf Sci 453:288–296

    CAS  Google Scholar 

  39. Han X, Chen Q, Zhang H et al (2019) Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem Eng J 368:513–524

    CAS  Google Scholar 

  40. Cai X, Shen X, Ji Z et al (2017) Synthesis and remarkable capacitive performance of reduced graphene oxide/silver/nickel-cobalt sulfide ternary nanocomposites. Chem Eng J 308:184–192

    CAS  Google Scholar 

  41. Chen X, Chen D, Guo X et al (2017) Facile growth of caterpillar-like NiCo2S4 nanocrystal arrays on nickle foam for high-performance supercapacitors. ACS Appl Mater Interfaces 9(22):18774–18781

    CAS  Google Scholar 

  42. Zhang Z, Huang X, Wang H et al (2019) Free-standing NiCo2S4@VS2 nanoneedle array composite electrode for high performance asymmetric supercapacitor application. J Alloy Compd 771:274–280

    CAS  Google Scholar 

  43. Zhang Z, Huang X, Li H et al (2017) All-solid-state flexible asymmetric supercapacitors with high energy and power densities based on NiCo2S4@MnS and active carbon. J Energy Chem 26(6):1260–1266

    Google Scholar 

  44. Zhang Y, Ma M, Yang J, Sun C, Su H, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830

    CAS  Google Scholar 

  45. Xia C, Alshareef HN (2015) Self-templating scheme for the synthesis of nanostructured transition-metal chalcogenide electrodes for capacitive energy storage. Chem Mater 27:4661–4668

    CAS  Google Scholar 

  46. Xia C, Peng L, Gandi AN, Schwingenschlögl U, Alshareef HN (2015) Is NiCo2S4 really a semiconductor? Chem Mater 27:6482–6485

    CAS  Google Scholar 

  47. Xia X, Zhu C, Luo J, Zeng Z, Guan C, Ng CF, Zhang H, Fan HJ (2010) Synthesis of free, standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 10(2014):766–773

    Google Scholar 

  48. Yan J, Fan Z, Wei S, Ning G, Tong W, Qiang Z, Zhang R, Zhi L, Fei W (2012) Advanced Asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    CAS  Google Scholar 

  49. Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216–2221

    CAS  Google Scholar 

  50. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguezreinoso F, Rouquerol J, Sing KSW (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 38:25–35

    Google Scholar 

  51. Mohamed SG, Attia SY, Hassan HH (2017) Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications. Microporous Mesoporous Mater 251:26–33

    CAS  Google Scholar 

  52. Wang T, Zhao B, Jiang H, Yang HP, Zhang K, Yuen MMF, Fu XZ, Sun R, Wong CP (2015) Electro-deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance. J Mater Chem A 3:23035–23041

    CAS  Google Scholar 

  53. Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) ChemInform abstract: direct Growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. Cheminform 79:577–583

    CAS  Google Scholar 

  54. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139

    CAS  Google Scholar 

  55. Hu W, Zou L, Chen R, Xie W, Chen X, Qin N, Li S, Yang G, Bao D (2014) Resistive switching properties and physical mechanism of cobalt ferrite thin films. Appl Phys Lett 104:2632

    Google Scholar 

  56. Wang JG, Jin D, Zhou R, Shen C, Xie K, Wei B (2016) One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. J Power Sources 306:100–106

    CAS  Google Scholar 

  57. Ma L, Hu Y, Chen R, Zhu G, Chen T, Lv H, Wang Y, Liang J, Liu H, Yan C (2016) Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 24:139–147

    CAS  Google Scholar 

  58. Chen J, Sheng K, Luo P, Li C, Shi G (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24:4569–4573

    CAS  Google Scholar 

  59. Hou L, Hua H, Bao R, Chen Z, Yang C, Zhu S, Pang G, Tong L, Yuan C, Zhang X (2016) Anion-exchange formation of hollow nico2s4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties. ChemPlusChem 81:557–563

    CAS  Google Scholar 

  60. Tie J, Han J, Diao G, Liu J, Xie Z, Cheng G, Sun M, Yu L (2018) Controllable synthesis of hierarchical nickel cobalt sulfide with enhanced electrochemical activity. Appl Surf Sci 435:187–194

    CAS  Google Scholar 

  61. Li H, Gao Y, Wang C, Yang G (2015) A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv Energy Mater 5:1401767

    Google Scholar 

  62. Zhang C, Cai X, Qian Y, Jiang H, Zhou L, Li B, Lai L, Shen Z, Huang W (2018) Electrochemically synthesis of nickel cobalt sulfide for high-performance flexible asymmetric supercapacitors. Adv Sci 5:1700375

    Google Scholar 

  63. Xue M, Fan F, Ding L, Liu J, Su S, Yin P, Cao M, Zhao W, Hu HM, Wang L (2014) An autophagosome-based therapeutic vaccine for HBV infection: a preclinical evaluation. J Transl Med 12:599–604

    Google Scholar 

  64. Rafai S, Qiao C, Naveed M, Wang Z, Younas W, Khalid S, Cao C (2019) Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors. Chem Eng J 362:576–587

    CAS  Google Scholar 

  65. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    CAS  Google Scholar 

  66. Liu S, Mao C, Niu Y, Yi F, Hou J, Lu S, Jiang J, Xu M, Li CM (2015) Facile synthesis of novel networked ultralong cobalt sulfide nanotubes and its application in supercapacitors. ACS Appl Mater Interfaces 7:25568–25573

    CAS  Google Scholar 

  67. Cai F, Sun R, Kang Y, Chen H, Chen M, Li Q (2015) One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors. Rsc Adv 5:23073–23079

    CAS  Google Scholar 

  68. Liu W, Li X, Zhu M, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186

    CAS  Google Scholar 

  69. Li R, Wang S, Huang Z, Lu F, He T (2016) NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J Power Sources 312:156–164

    CAS  Google Scholar 

  70. Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    CAS  Google Scholar 

  71. Tiruneh SN, Kang BK, Kwag SH, Lee YH, Kim MS, Yoon DH (2018) Synergistically Active NiCo2S4 nanoparticles coupled with holey defect graphene hydrogel for high-performance solid-state supercapacitors. Chem Eur J 24:3263–3270

    CAS  Google Scholar 

  72. Song X, Chen HC, Huang C, Qin Y, Li H (2018) Highly active and porous M3S4 (M = Ni, Co) with enriched electroactive edge sites for hybrid supercapacitor with better power and energy delivery performance. Electrochim Acta 283:121–131

    CAS  Google Scholar 

  73. Hu Y, Zhang J, Wang D, Sun J, Zhang L, Liu Y, Gao S, Cui Y (2019) Urchin-like NiCo2S4 structures synthesized through a one-step solvothermal process for high-performance supercapacitors. Particuology. https://doi.org/10.1016/j.partic.2018.07.008

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Excellent Technology Leaders Program (Project Number 17XD1424900), Science and Technology Commission of Shanghai Municipality Project (Project Number 18090503800) and Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jibo Jiang or Sheng Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Sun, Y., Chen, Y. et al. One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor. J Mater Sci 54, 11936–11950 (2019). https://doi.org/10.1007/s10853-019-03746-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03746-8

Navigation