Journal of Materials Science

, Volume 54, Issue 17, pp 11556–11563 | Cite as

Flexible, UV-responsive perovskite photodetectors with low driving voltage

  • Hao Li
  • Dandan Yang
  • Ting Zhang
  • Peng Zhang
  • Feng Wang
  • Chaojie Qin
  • Ruihan Yang
  • Zhi David Chen
  • Shibin LiEmail author
Electronic materials


Although lead halide perovskites with tunable band gaps are widely used for photodetection in the visible spectrum, very few studies have been focused on the use of perovskites in ultraviolet detection. Here, we report that MAPbI3−xClx-based photodetectors (PDs) show a response in the ultraviolet spectrum as well as yield very fast photoresponse speed (< 80 µs/90 µs) and excellent detectivity (1012 Jones with 365 nm lamp) with very low driving voltage (0.3 V). The results demonstrate the enhancement of photoelectric performance of the PDs in the ultraviolet spectrum is because the doping of Cl in MAPbI3 increases the bandgap and the crystalline grain size of MAPbI3−xClx film. Moreover, 10%PbCl2-MAPbI3−xClx-based flexible photodetectors displays remarkable mechanical flexibility.



This work was supported by National Natural Science Foundation of China under Grant Nos. 61421002, 61474015, 61574029 and 61471085. This work was also partially supported by University of Kentucky.

Author’s contribution

HL, DY and TZ designed experiments and carried out the measurements. PZ, FW, CQ and RY participated in the work to analyze the data and prepared the manuscript initially. SL and ZC gave equipment support. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM (2001) Highly polarized photoluminescence and photodetection from singer indium phosphide nanowires. Science 293:1455–1457CrossRefGoogle Scholar
  2. 2.
    Wang L, Jie J, Shao Z, Zhang Q, Zhang X, Wang Y, Sun Z, Lee S-T (2015) MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater 25:2910–2919CrossRefGoogle Scholar
  3. 3.
    Zhang T, Liu B, Ahmad W, Xuan Y, Ying X, Liu Z, Chen Z, Li S (2017) Optical and electronic properties of femtosecond laser-induced sulfur-hyperdoped silicon N+/P photodiodes. Nanoscale Res Lett 12:522CrossRefGoogle Scholar
  4. 4.
    Wang H, Kim DH (2017) Perovskite-based photodetectors: materials and devices. Chem Soc Rev 46:5204–5236CrossRefGoogle Scholar
  5. 5.
    Gong X, Tong M, Xia Y et al (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325:1665–1667CrossRefGoogle Scholar
  6. 6.
    Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y (2007) Plastic near-infrared photodetectors utilizing low band gap polymer. Adv Mater 19:3979–3983CrossRefGoogle Scholar
  7. 7.
    Han S, Jin W, Zhang D et al (2004) Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination. Chem Phys Lett 389:176–180CrossRefGoogle Scholar
  8. 8.
    Ahn Y, Dunning J, Park J (2005) Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett 5:1367–1370CrossRefGoogle Scholar
  9. 9.
    Wang Y, Li S, Zhang P et al (2016) Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%. Nanoscale 8:19654–19661CrossRefGoogle Scholar
  10. 10.
    Li S, Zhang P, Chen H, Wang Y, Liu D, Wu J, Sarvari H, Chen ZD (2017) Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources 342:990–997CrossRefGoogle Scholar
  11. 11.
    Zhang P, Wu J, Zhang T et al (2018) Perovskite solar cells with ZnO electron-transporting materials. Adv Mater 30:1703737CrossRefGoogle Scholar
  12. 12.
    Tong X, Lin F, Wu J, Wang ZM (2016) High performance perovskite solar cells. Adv Sci 3:18742–18745CrossRefGoogle Scholar
  13. 13.
    Jeon NJ, Na H, Jung EH et al (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3:682–689CrossRefGoogle Scholar
  14. 14.
    Liu D, Li S, Zhang P et al (2017) Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31:462–468CrossRefGoogle Scholar
  15. 15.
    Ji L, Zhang XZ, Zhang T et al (2019) Band alignment of Pb-Sn mixed triple cation perovskites for inverted solar cells with negligible hysteresis. J Mater Chem A 7:9154–9162CrossRefGoogle Scholar
  16. 16.
    Li S, Zhang P, Wang Y, Sarvari H et al (2017) Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition. Nano Res 10:1092–1103CrossRefGoogle Scholar
  17. 17.
    Wang F, Ye Z, Sarvari H et al (2019) Humidity-insensitive fabrication of efficient perovskite solar cells in ambient air. J Power Sources 412:359–365CrossRefGoogle Scholar
  18. 18.
    Gu X, Wang Y, Zhang T et al (2017) Enhanced electronic transport in Fe3+-doped TiO2 for high efficiency perovskite solar cells. J Mater Chem C 5:10754–10760CrossRefGoogle Scholar
  19. 19.
    Wang F, Zhang T, Wang Y et al (2019) Steering the crystallization of perovskites for high performance solar cells in ambient air. J Mater Chem A 7:12166–12175CrossRefGoogle Scholar
  20. 20.
    Li F, Ma C, Wang H, Hu W, Yu W, Sheikh AD, Wu T (2015) Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun 6:8238CrossRefGoogle Scholar
  21. 21.
    Lin Q, Armin A, Burn PL, Meredith P (2015) Filterless narrowband visible photodetectors. Nat Photon 9:687–694CrossRefGoogle Scholar
  22. 22.
    Sutherland BR, Johnston AK, Ip AH, Xu J, Adinolfi V, Kanjanaboos P, Sargent EH (2015) Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics 2:1117–1123CrossRefGoogle Scholar
  23. 23.
    Zhang F, Yang B, Zheng K, Yang S, Li Y, Deng W, He R (2018) Formamidinium lead bromide (FAPbBr3) perovskite microcrystals for sensitive and fast photodetectors. Nano-Micro Lett 10:43CrossRefGoogle Scholar
  24. 24.
    Chen H-W, Sakai N, Jena AK, Sanehira Y, Ikegami M, Ho K-C, Miyasaka T (2015) A switchable high-sensitivity photodetecting and photovoltaic device with perovskite absorber. J Phys Chem Lett 6:1773–1779CrossRefGoogle Scholar
  25. 25.
    Wangyang P, Gong C, Rao G et al (2018) Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv Opt Mater 6:1701302CrossRefGoogle Scholar
  26. 26.
    Zhu P, Gu S, Shen X et al (2016) Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett 16:871–876CrossRefGoogle Scholar
  27. 27.
    Liang FX, Liang L, Zhao XY et al (2019) A sensitive broadband (UV–vis–NIR) perovskite photodetector using topological insulator as electrodes. Adv Opt Mater 7:1801392Google Scholar
  28. 28.
    Maculan G, Sheikh AD, Abdelhady AL et al (2015) CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett 6:3781–3786CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Liu Y, Xu Z et al (2019) Two-dimensional (PEA)2PbBr 4 perovskite single crystals for a high performance UV-detector. J Mater Chem C 7:1584–1591CrossRefGoogle Scholar
  30. 30.
    Zhang T, Wu J, Zhang P et al (2018) High speed and stable solution-processed triple cation perovskite photodetectors. Adv Opt, Mater, p 1701341Google Scholar
  31. 31.
    Zhang T, Wang F, Zhang P et al (2019) Low-temperature processed inorganic perovskites for flexible detectors with a broadband photoresponse. Nanoscale 11:2871–2877CrossRefGoogle Scholar
  32. 32.
    Lim S, Ha M, Lee Y, Ko H (2018) Large-area, solution-processed, hierarchical mapbi3 nanoribbon arrays for self-powered flexible photodetectors. Adv Opt Mater 6:1800615CrossRefGoogle Scholar
  33. 33.
    Eperon GE, Burlakov VM, Docampo P, Goriely A, Snaith HJ (2014) Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater 24:151–157CrossRefGoogle Scholar
  34. 34.
    Xiao M, Huang F, Huang W et al (2014) A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem 53:9898–9903CrossRefGoogle Scholar
  35. 35.
    Yu H, Wang F, Xie F, Li W, Chen J, Zhao N (2015) The role of chlorine in the formation process of “CH3NH3PbI3-xClx” perovskite. Adv Funct Mater 24:7102–7108Google Scholar
  36. 36.
    Bi D, Tress W, Dar MI et al (2016) Efficient luminescent solar cells based on tailored mixed-cation perovskite. Sci Adv 2:e1501170CrossRefGoogle Scholar
  37. 37.
    Hu X, Zhang X, Liang L, Bao J, Li S, Yang W, Xie Y (2014) High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater 24:7373–7380CrossRefGoogle Scholar
  38. 38.
    Lu H, Tian W, Cao F, Ma Y, Gu B, Li L (2016) A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv Funct Mater 26:1296–1320CrossRefGoogle Scholar
  39. 39.
    Xie C, You P, Liu Z, Li L, Yan F (2017) Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci Appl 6:e17023CrossRefGoogle Scholar
  40. 40.
    Zhao F, Xu K, Luo X, Lv W, Peng Y, Wang Y, Lu F, Xu S (2017) Ultrasensitivity broadband photodetectors based on perovskite: research on film crystallization and electrode optimization. Org Electron 46:35–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Electrical and Computer Engineering and Center for Nanoscale Science and EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations