Journal of Materials Science

, Volume 54, Issue 17, pp 11378–11389 | Cite as

Exploring the catalytic activity of MXenes Mn+1CnO2 for hydrogen evolution

  • Shiguo Ma
  • Xiaoli FanEmail author
  • Yurong An
  • Danxi Yang
  • Zhifen Luo
  • Yan Hu
  • Nijing Guo


Currently, finding the non-precious metal catalyst for hydrogen evolution reaction (HER) is significant and urgent. By performing the first-principles calculations, we studied the structural and electronic properties, as well as the catalytic activity of MXenes Mn+1CnO2 (n = 1, 2; M = Sc, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta and W) toward HER. These 22 MXenes are metallic except for Sc2CO2, Ti2CO2, Mn2CO2, Zr2CO2 and Hf2CO2 which are semiconducting. By calculating the Gibbs free energy change (ΔGH) for H adsorption which is the simple but effective descriptor for HER catalytic activity, and analyzing the electrical conductivity, we find that Nb2CO2, W2CO2, Zr3C2O2 and W3C2O2 are catalytic active for HER at low H coverage. Particularly, Nb2CO2 and Zr3C2O2 maintain to be active for catalyzing HER under tensile strain less than 5%. And Nb3C2O2 shows enhanced catalytic activity for HER under 3–5% tensile strain. Additionally, the differential ΔGH and average ΔGH were used to evaluate the HER catalytic activity at high H coverage (1/8–6/8). Our calculations show that Nb2CO2 is active for HER at H coverage less than 3/8. Plus, V2CO2, Ti3C2O2 and Cr3C2O2 demonstrate the catalytic activity for HER at high H coverage.



This work was supported by the National key R&D Program of China (2018YFB0703800) and the Natural Science Fund of Shaanxi Province for distinguished Yong Scholars (2019JC-10).


  1. 1.
    Dresselhaus M, Thomas I (2001) Alternative energy technologies. Nature 414:332–337CrossRefGoogle Scholar
  2. 2.
    Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRefGoogle Scholar
  3. 3.
    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRefGoogle Scholar
  4. 4.
    Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resource: promising green energy carrier for clean development. Renew Sust Energy Rev 57:850–866CrossRefGoogle Scholar
  5. 5.
    Gressley J, Jarmaillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909CrossRefGoogle Scholar
  6. 6.
    Zou XX, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180CrossRefGoogle Scholar
  7. 7.
    Zhen Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combing experiment and theory. Angew Chem Int Ed 54(1):52–65CrossRefGoogle Scholar
  8. 8.
    Seh ZW, Fredrickson KD, Anasori B, Kibsgaard J, Strickler AL, Lukatskaya MR, Gogotsi Y, Jaramillo TF, Vojvodic A (2016) Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett 1(3):589–594CrossRefGoogle Scholar
  9. 9.
    Ran JR, Gao GP, Li FT, Ma TY, Du AJ, Qiao SZ (2017) Ti3C2 MXene Co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907CrossRefGoogle Scholar
  10. 10.
    Ling CY, Li S, Ouyang YX, Wang JL (2016) Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chem Mater 28(24):9026–9032CrossRefGoogle Scholar
  11. 11.
    Jiang W, Zou XL, Du HD, Gan L, Xu CJ, Kang FY, Duan WH, Li J (2018) Universal descriptor for large-scale screening of high-performance MXene-based materials for energy storage and conversion. Chem Mater 30(8):2687–2693CrossRefGoogle Scholar
  12. 12.
    Pandey M, Thygesen KS (2017) Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution; a computational screening study. J Phys Chem C 121(25):13593–13598CrossRefGoogle Scholar
  13. 13.
    Gao GP, O’Mullane AP, Du AJ (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7(1):494–500CrossRefGoogle Scholar
  14. 14.
    Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2015) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127(15):5308–5309CrossRefGoogle Scholar
  15. 15.
    Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2015) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26CrossRefGoogle Scholar
  16. 16.
    Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2017) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317(5834):100–102CrossRefGoogle Scholar
  17. 17.
    Lukowski MA, Daniel AS, Meng F, Forticaux A, Li LS, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277CrossRefGoogle Scholar
  18. 18.
    Voiry D, Yamaguchi H, Li JW, Silva R, Alves DC, Fujita T, Chen MW, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12:850–855CrossRefGoogle Scholar
  19. 19.
    Li YG, Wang HL, Xie LM, Liang YY, Hong GS, Dai HJ (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299CrossRefGoogle Scholar
  20. 20.
    Kibsgaard J, Chen ZB, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969CrossRefGoogle Scholar
  21. 21.
    Xie JF, Zhang H, Li S, Wang RX, Sun X, Zhou M, Zhou JF, Lou XW, Xie Y (2013) Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25(40):5807–5813CrossRefGoogle Scholar
  22. 22.
    Xie JF, Zhang JJ, Li S, Grote F, Zhang XD, Zhang H, Wang RX, Lei Y, Pan BC, Xie Y (2013) Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 135(47):17881–17888CrossRefGoogle Scholar
  23. 23.
    Fan XL, Yang Y, Xiao P, Lau WM (2014) Site-specific catalytic activity in exfoliated MoS2 single-layer polytypes for hydrogen evolution: basal plane and edges. J Mater Chem A 2:20545–20551CrossRefGoogle Scholar
  24. 24.
    An YR, Fan XL, Luo ZF, Lau WM (2016) Nanopolygons of monolayer MS2: best morphology and size for HER catalysis. Nano Lett 17(1):368–376CrossRefGoogle Scholar
  25. 25.
    Liang HF, Shi HH, Zhang DF, Ming FW, Wang RR, Zhuo JQ, Wang ZC (2016) Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem Mater 28(16):5587–5591CrossRefGoogle Scholar
  26. 26.
    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331CrossRefGoogle Scholar
  27. 27.
    Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005CrossRefGoogle Scholar
  28. 28.
    Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253CrossRefGoogle Scholar
  29. 29.
    Zhou J, Zha XH, Chen FY, Ye Q, Eklund P, Du SY, Huang Q (2016) Two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem 128:5092–5097CrossRefGoogle Scholar
  30. 30.
    Ashton M, Henning RG, Broderick SR, Rajan K, Sinnott SB (2016) Computational discovery of stable M2AX phases. Phys Rev B 94(5):054116CrossRefGoogle Scholar
  31. 31.
    Dall’Agnese Y, Taberna PL, Gogotsi Y, Simon P (2015) Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J Phys Chem Lett 6(12):2305–2309CrossRefGoogle Scholar
  32. 32.
    Meshkian R, Tao QZ, Dahlqvist M, Lu J, Hultman L, Rosen J (2017) Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater 125:476–480CrossRefGoogle Scholar
  33. 33.
    Naguib M, Halim J, Lu J, Kevin MC, Lars H, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969CrossRefGoogle Scholar
  34. 34.
    Tang X, Guo X, Wu WJ, Wang GX (2018) 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries. Adv Energy Mater 8(33):1801897CrossRefGoogle Scholar
  35. 35.
    Xu C, Wang LB, Liu ZB, Chen L, Guo JK, Ma XL, Cheng HM, Ren WC (2015) Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater 14:1135–1141CrossRefGoogle Scholar
  36. 36.
    Huang H, Wu HH, Chi C, Huang BL, Zhang TY (2019) Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries. J Mater Chem A 7:8897–8904CrossRefGoogle Scholar
  37. 37.
    Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505CrossRefGoogle Scholar
  38. 38.
    Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN (2015) Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater 27(15):5314–5323CrossRefGoogle Scholar
  39. 39.
    Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098CrossRefGoogle Scholar
  40. 40.
    Xie Y, Naguib M, Mochalin V, Barsoum MW, Gogotsi Y, Yu X, Nam KW, Yang KQ, Kolesnikov AI, Kent PRC (2014) Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc 135(17):6385–6394CrossRefGoogle Scholar
  41. 41.
    Li NB, Wei ST, Xu YC, Liu J, Wu JD, Jia GR, Cui XQ (2018) Synergetic enhancement of oxygen evolution reaction by Ti3C2Tx nanosheets supported amorphous FeOOH quantum dots. Electrochim Acta 290:364–368CrossRefGoogle Scholar
  42. 42.
    Kresse G, Furthmüller J (1996) Efficiency iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54(16):11169–11186CrossRefGoogle Scholar
  43. 43.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 59(3):1758–1775CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  45. 45.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  46. 46.
    Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  47. 47.
    Greely J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913CrossRefGoogle Scholar
  48. 48.
    Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23–J26CrossRefGoogle Scholar
  49. 49.
    Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36(2):389–397CrossRefGoogle Scholar
  50. 50.
    Campbell CT, Sellers JRV (2012) The entropies of adsorbed molecules. J Am Chem Soc 134(43):18109–18115CrossRefGoogle Scholar
  51. 51.
    Budi A, Stipp SLS, Andersson MP (2018) Calculation of entropy of adsorption for small molecules on mineral surfaces. J Phys Chem C 122(15):8236–8243CrossRefGoogle Scholar
  52. 52.
    Fu ZH, Zhang QF, Legut D, Si C, Germann TC, Lookman T, Du SY, Francisco JS, Zhang RF (2016) Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys Rev B 94(10):104103CrossRefGoogle Scholar
  53. 53.
    Fu ZH, Zhang H, Si C, Legut D, Germann TC, Zhang QF, Du SY, Francisco JS, Zhang RF (2018) Mechanistic quantification of thermodynamic stability and mechanical strength for two-dimensional transition-metal carbides. J Phys Chem C 122(8):4710–4722CrossRefGoogle Scholar
  54. 54.
    Yu S, Rao YC, Wu HH, Duan XM (2018) C2N: an excellent catalyst for the hydrogen evolution reaction. Phys Chem Chem Phys 20:27970–27974CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, Centre of Advanced Lubrication and Seal Materials, School of Material Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations