Adsorption of phosgene on Si-embedded MoS2 sheet and electric field-assisted desorption: insights from DFT calculations

Abstract

In quest of effective materials and technologies for detecting toxic gas molecules, an attempt is made to detect phosgene gas molecule using MoS2 by employing dispersion corrected density functional theory calculations. Doping Si into the S-vacancy of MoS2 monolayer results in improvement of adsorption capability of phosgene gas molecule, reaching adsorption energy of − 1.228 eV. It is revealed that Si-doped MoS2 sheet is thermodynamically stable at high temperatures, and hence, room temperature stability is expected. Origin of interaction between phosgene and adsorbent is analyzed by calculating density of states, charge transfer, and vibrational frequency. Strong binding and more charge transfer modulate band gap and work function of the Si-doped MoS2 material post-phosgene adsorption indicate that such system is highly sensitive to phosgene. It is further shown that the sensing material is completely recovered by applying 0.6 V/Å magnitude vertical positive electric field. The reason for reduced stability of the system is revealed by variations in charge transfer process and induced dipole interaction due to the charge redistribution. The results suggest potential application of MoS2-based sheets for sensing phosgene gas molecule, where external electric field efficiently aids reversible adsorption process.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1

    Manogue WH, Pigford RL (1960) The kinetics of the absorption of phosgene into water and aqueous solutions. AIChE J 6(3):494–500

    Article  Google Scholar 

  2. 2

    Leonardos G, Kendall DA, Barnard NJ (1969) Odor threshold determinations of 53 odorant chemicals. J Air Pollut Control Assoc 19(2):91–95

    Article  Google Scholar 

  3. 3

    Borak J, Diller WF (2001) Phosgene exposure: mechanisms of injury and treatment strategies. J Occup Environ Med 43(2):110–119

    Article  Google Scholar 

  4. 4

    Borak J, Sidell FR (1992) Agents of chemical warfare: sulfur mustard. Ann Emerg Med 21(3):303–307

    Article  Google Scholar 

  5. 5

    Babad H, Zeiler AG (1973) Chemistry of phosgene. Chem Rev 73(1):75–91

    Article  Google Scholar 

  6. 6

    Singh HB (1976) Phosgene in the ambient air. Nature 264:428–429

    Article  Google Scholar 

  7. 7

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  Google Scholar 

  8. 8

    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140

    Article  Google Scholar 

  9. 9

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80

    Article  Google Scholar 

  10. 10

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501

    Article  Google Scholar 

  11. 11

    Donarelli M, Prezioso S, Perrozzi F, Bisti F, Nardone M, Giancaterini L, Cantalini C, Ottaviano L (2015) Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens Actuators B 207:602–613

    Article  Google Scholar 

  12. 12

    Late DJ, Huang Y-K, Liu B, Acharya J, Shirodkar SN, Luo J, Yan A, Charles D, Waghmare UV, Dravid VP, Rao CNR (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891

    Article  Google Scholar 

  13. 13

    Cho B, Yoon J, Lim SK, Kim AR, Kim D-H, Park SG, Kwon J-D, Lee Y-J et al (2015) Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interfaces 7:16775–16780

    Article  Google Scholar 

  14. 14

    Sharma A, Khan MS, Husain M, Khan MS, Srivastava A (2018) Sensing of CO and NO on Cu-doped MoS2 monolayer-based single electron transistor: a first principles study. IEEE Sens J 18(7):2853–2860

    Article  Google Scholar 

  15. 15

    Le D, Rawal TB, Rahman TS (2014) Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J Phys Chem C118:5346–5351

    Google Scholar 

  16. 16

    Sharma A, Srivastava A, Husain M, Khan MS (2018) Computational investigations of Cu-embedded MoS2 sheet for CO oxidation catalysis. J Mater Sci 53:9578–9588. https://doi.org/10.1007/s10853-018-2269-5

    Article  Google Scholar 

  17. 17

    Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulphides. Faraday Discuss 140:219–317

    Article  Google Scholar 

  18. 18

    Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144

    Article  Google Scholar 

  19. 19

    Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830

    Article  Google Scholar 

  20. 20

    Zhou J, Qin J, Zhang X, Shi C, Liu E, Li J, Zhao N, He C (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9:3837–3848

    Article  Google Scholar 

  21. 21

    Chen Y, Song B, Tang X, Lu L, Xue J (2014) Ultra small Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10:1536–1543

    Article  Google Scholar 

  22. 22

    Huang Y, Guo J, Kang Y, Ai Y, Li CM (2015) Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale 7(46):19358–19376

    Article  Google Scholar 

  23. 23

    Rao CNR, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces 7(15):7809–7832

    Article  Google Scholar 

  24. 24

    Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591

    Article  Google Scholar 

  25. 25

    Huang Y, Wu J, Xu X, Ho Y, Ni G, Zou Q, Koon G, Zhao W, Neto AHC, Eda G (2013) An innovative way of etching MoS2: characterization and mechanistic investigation. Nano Res 6:200–207

    Article  Google Scholar 

  26. 26

    Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl Phys Lett 95:232105

    Article  Google Scholar 

  27. 27

    Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee YJ, Park SG, Kwon JD, Kim CS, Song M, Jeong Y, Nam KS, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim DH (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052

    Article  Google Scholar 

  28. 28

    Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B Chem 171–172:846–852

    Article  Google Scholar 

  29. 29

    Zhang T, Sun H, Wang F, Zhang W, Tang S, Ma J, Gong H, Zhang J (2017) Adsorption of phosgene molecule on the transition metal-doped graphene: first principles calculations. Appl Surf Sci 425:340–350

    Article  Google Scholar 

  30. 30

    Virji S, Kojima R, Fowler JD, Villanueva JG, Kaner RB, Weiller BH (2010) Polyaniline nanofiber composites with amines: novel materials for phosgene detection. Nano Res 2:135–142

    Article  Google Scholar 

  31. 31

    Shakerzadeh E, Khodayar E, Noorizadeh S (2016) Theoretical assessment of phosgene adsorption behavior onto pristine, Al- and Ga-doped B12N12 and B16N16 nanoclusters. Comput Mater Sci 118:155–171

    Article  Google Scholar 

  32. 32

    Joung S-K, Amemiya T, Murabayashi M, Cai R, Itoh K (2005) Chemical adsorption of phosgene on TiO2 and its effect on the photocatalytic oxidation of trichloroethylene. Surf Sci 598:174–184

    Article  Google Scholar 

  33. 33

    Baei MT, Soltani A, Hashemian S, Mohammadian H (2014) Al12N12 nanocage as a potential sensor for phosgene detection. J Chem 92:605–610

    Google Scholar 

  34. 34

    Schedin F, Geim AK, Moeozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  Google Scholar 

  35. 35

    Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504

    Article  Google Scholar 

  36. 36

    Cortes-Arriagada D, Villegas-Escobar N (2017) A DFT analysis of the adsorption of nitrogen oxides on Fe-doped graphene, and the electric field induced desorption. Appl Surf Sci 420:446–455

    Article  Google Scholar 

  37. 37

    Ao Z, Li S, Jiang Q (2010) Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Commun 150:680–683

    Article  Google Scholar 

  38. 38

    Guo H, Zhang W, Lu N, Zhuo Z, Zeng XC, Wu X, Yang J (2015) CO2 capture on h-BN sheet with high selectivity controlled by external electric field. J Phys Chem C 119:6912–6917

    Article  Google Scholar 

  39. 39

    Zhang T, Sun H, Wang F, Zhang W, Ma J, Tang S, Gong H, Zhang J (2018) Electric-field controlled capture or release of phosgene molecule on graphene-based materials: first principles calculations. Appl Surf Sci 427:1019–1026

    Google Scholar 

  40. 40

    Ma D, Ju W, Li T, Yang G, He C, Ma B, Tang Y, Lu Z, Yang Z (2016) Formaldehyde molecule adsorption on the doped monolayer MoS2: a first-principles study. Appl Surf Sci 371:180–188

    Article  Google Scholar 

  41. 41

    Luo H, Cao Y, Zhou J, Feng J, Cao J, Guo H (2016) Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem Phys Lett 643:27–33

    Article  Google Scholar 

  42. 42

    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  43. 43

    MedeA, Materials design. http://www.materialsdesign.com. Accessed 31 Jul 2018

  44. 44

    Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59:7413–7421

    Article  Google Scholar 

  45. 45

    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements. J Chem Phys 132:154104

    Article  Google Scholar 

  46. 46

    Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360

    Article  Google Scholar 

  47. 47

    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  48. 48

    Schwebel T, Frank J, Fleischer M, Meixner H, Kohl C-D (2000) A new type of gas sensor based on thermionic charge carrier emission. Sens Actuators B Chem 68:157–161

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Jamia Millia Islamia, New Delhi, India, for providing computational infrastructure. One of the authors, AS, acknowledges University Grants Commission (UGC) for Basic Scientific Research (BSR) Fellowship.

Author information

Affiliations

Authors

Contributions

AS performed DFT calculations and drafted the manuscript. MH participated in the calculation part. MSK conceived of the study and helped in writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohd. Shahid Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Khan, M.S. & Husain, M. Adsorption of phosgene on Si-embedded MoS2 sheet and electric field-assisted desorption: insights from DFT calculations. J Mater Sci 54, 11497–11508 (2019). https://doi.org/10.1007/s10853-019-03706-2

Download citation