Journal of Materials Science

, Volume 54, Issue 17, pp 11497–11508 | Cite as

Adsorption of phosgene on Si-embedded MoS2 sheet and electric field-assisted desorption: insights from DFT calculations

  • Archana Sharma
  • Mohd. Shahid KhanEmail author
  • Mushahid Husain
Computation & theory


In quest of effective materials and technologies for detecting toxic gas molecules, an attempt is made to detect phosgene gas molecule using MoS2 by employing dispersion corrected density functional theory calculations. Doping Si into the S-vacancy of MoS2 monolayer results in improvement of adsorption capability of phosgene gas molecule, reaching adsorption energy of − 1.228 eV. It is revealed that Si-doped MoS2 sheet is thermodynamically stable at high temperatures, and hence, room temperature stability is expected. Origin of interaction between phosgene and adsorbent is analyzed by calculating density of states, charge transfer, and vibrational frequency. Strong binding and more charge transfer modulate band gap and work function of the Si-doped MoS2 material post-phosgene adsorption indicate that such system is highly sensitive to phosgene. It is further shown that the sensing material is completely recovered by applying 0.6 V/Å magnitude vertical positive electric field. The reason for reduced stability of the system is revealed by variations in charge transfer process and induced dipole interaction due to the charge redistribution. The results suggest potential application of MoS2-based sheets for sensing phosgene gas molecule, where external electric field efficiently aids reversible adsorption process.



The authors are thankful to Jamia Millia Islamia, New Delhi, India, for providing computational infrastructure. One of the authors, AS, acknowledges University Grants Commission (UGC) for Basic Scientific Research (BSR) Fellowship.

Authors’ contributions

AS performed DFT calculations and drafted the manuscript. MH participated in the calculation part. MSK conceived of the study and helped in writing of the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Manogue WH, Pigford RL (1960) The kinetics of the absorption of phosgene into water and aqueous solutions. AIChE J 6(3):494–500CrossRefGoogle Scholar
  2. 2.
    Leonardos G, Kendall DA, Barnard NJ (1969) Odor threshold determinations of 53 odorant chemicals. J Air Pollut Control Assoc 19(2):91–95CrossRefGoogle Scholar
  3. 3.
    Borak J, Diller WF (2001) Phosgene exposure: mechanisms of injury and treatment strategies. J Occup Environ Med 43(2):110–119CrossRefGoogle Scholar
  4. 4.
    Borak J, Sidell FR (1992) Agents of chemical warfare: sulfur mustard. Ann Emerg Med 21(3):303–307CrossRefGoogle Scholar
  5. 5.
    Babad H, Zeiler AG (1973) Chemistry of phosgene. Chem Rev 73(1):75–91CrossRefGoogle Scholar
  6. 6.
    Singh HB (1976) Phosgene in the ambient air. Nature 264:428–429CrossRefGoogle Scholar
  7. 7.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140CrossRefGoogle Scholar
  9. 9.
    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80CrossRefGoogle Scholar
  10. 10.
    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501CrossRefGoogle Scholar
  11. 11.
    Donarelli M, Prezioso S, Perrozzi F, Bisti F, Nardone M, Giancaterini L, Cantalini C, Ottaviano L (2015) Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens Actuators B 207:602–613CrossRefGoogle Scholar
  12. 12.
    Late DJ, Huang Y-K, Liu B, Acharya J, Shirodkar SN, Luo J, Yan A, Charles D, Waghmare UV, Dravid VP, Rao CNR (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891CrossRefGoogle Scholar
  13. 13.
    Cho B, Yoon J, Lim SK, Kim AR, Kim D-H, Park SG, Kwon J-D, Lee Y-J et al (2015) Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl Mater Interfaces 7:16775–16780CrossRefGoogle Scholar
  14. 14.
    Sharma A, Khan MS, Husain M, Khan MS, Srivastava A (2018) Sensing of CO and NO on Cu-doped MoS2 monolayer-based single electron transistor: a first principles study. IEEE Sens J 18(7):2853–2860CrossRefGoogle Scholar
  15. 15.
    Le D, Rawal TB, Rahman TS (2014) Single-layer MoS2 with sulfur vacancies: structure and catalytic application. J Phys Chem C118:5346–5351Google Scholar
  16. 16.
    Sharma A, Srivastava A, Husain M, Khan MS (2018) Computational investigations of Cu-embedded MoS2 sheet for CO oxidation catalysis. J Mater Sci 53:9578–9588. CrossRefGoogle Scholar
  17. 17.
    Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I (2009) Hydrogen evolution on nano-particulate transition metal sulphides. Faraday Discuss 140:219–317CrossRefGoogle Scholar
  18. 18.
    Vrubel H, Merki D, Hu X (2012) Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ Sci 5:6136–6144CrossRefGoogle Scholar
  19. 19.
    Hwang H, Kim H, Cho J (2011) MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett 11:4826–4830CrossRefGoogle Scholar
  20. 20.
    Zhou J, Qin J, Zhang X, Shi C, Liu E, Li J, Zhao N, He C (2015) 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 9:3837–3848CrossRefGoogle Scholar
  21. 21.
    Chen Y, Song B, Tang X, Lu L, Xue J (2014) Ultra small Fe3O4 nanoparticle/MoS2 nanosheet composites with superior performances for lithium ion batteries. Small 10:1536–1543CrossRefGoogle Scholar
  22. 22.
    Huang Y, Guo J, Kang Y, Ai Y, Li CM (2015) Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale 7(46):19358–19376CrossRefGoogle Scholar
  23. 23.
    Rao CNR, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces 7(15):7809–7832CrossRefGoogle Scholar
  24. 24.
    Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591CrossRefGoogle Scholar
  25. 25.
    Huang Y, Wu J, Xu X, Ho Y, Ni G, Zou Q, Koon G, Zhao W, Neto AHC, Eda G (2013) An innovative way of etching MoS2: characterization and mechanistic investigation. Nano Res 6:200–207CrossRefGoogle Scholar
  26. 26.
    Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl Phys Lett 95:232105CrossRefGoogle Scholar
  27. 27.
    Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee YJ, Park SG, Kwon JD, Kim CS, Song M, Jeong Y, Nam KS, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim DH (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052CrossRefGoogle Scholar
  28. 28.
    Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B Chem 171–172:846–852CrossRefGoogle Scholar
  29. 29.
    Zhang T, Sun H, Wang F, Zhang W, Tang S, Ma J, Gong H, Zhang J (2017) Adsorption of phosgene molecule on the transition metal-doped graphene: first principles calculations. Appl Surf Sci 425:340–350CrossRefGoogle Scholar
  30. 30.
    Virji S, Kojima R, Fowler JD, Villanueva JG, Kaner RB, Weiller BH (2010) Polyaniline nanofiber composites with amines: novel materials for phosgene detection. Nano Res 2:135–142CrossRefGoogle Scholar
  31. 31.
    Shakerzadeh E, Khodayar E, Noorizadeh S (2016) Theoretical assessment of phosgene adsorption behavior onto pristine, Al- and Ga-doped B12N12 and B16N16 nanoclusters. Comput Mater Sci 118:155–171CrossRefGoogle Scholar
  32. 32.
    Joung S-K, Amemiya T, Murabayashi M, Cai R, Itoh K (2005) Chemical adsorption of phosgene on TiO2 and its effect on the photocatalytic oxidation of trichloroethylene. Surf Sci 598:174–184CrossRefGoogle Scholar
  33. 33.
    Baei MT, Soltani A, Hashemian S, Mohammadian H (2014) Al12N12 nanocage as a potential sensor for phosgene detection. J Chem 92:605–610Google Scholar
  34. 34.
    Schedin F, Geim AK, Moeozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRefGoogle Scholar
  35. 35.
    Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504CrossRefGoogle Scholar
  36. 36.
    Cortes-Arriagada D, Villegas-Escobar N (2017) A DFT analysis of the adsorption of nitrogen oxides on Fe-doped graphene, and the electric field induced desorption. Appl Surf Sci 420:446–455CrossRefGoogle Scholar
  37. 37.
    Ao Z, Li S, Jiang Q (2010) Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Commun 150:680–683CrossRefGoogle Scholar
  38. 38.
    Guo H, Zhang W, Lu N, Zhuo Z, Zeng XC, Wu X, Yang J (2015) CO2 capture on h-BN sheet with high selectivity controlled by external electric field. J Phys Chem C 119:6912–6917CrossRefGoogle Scholar
  39. 39.
    Zhang T, Sun H, Wang F, Zhang W, Ma J, Tang S, Gong H, Zhang J (2018) Electric-field controlled capture or release of phosgene molecule on graphene-based materials: first principles calculations. Appl Surf Sci 427:1019–1026Google Scholar
  40. 40.
    Ma D, Ju W, Li T, Yang G, He C, Ma B, Tang Y, Lu Z, Yang Z (2016) Formaldehyde molecule adsorption on the doped monolayer MoS2: a first-principles study. Appl Surf Sci 371:180–188CrossRefGoogle Scholar
  41. 41.
    Luo H, Cao Y, Zhou J, Feng J, Cao J, Guo H (2016) Adsorption of NO2, NH3 on monolayer MoS2 doped with Al, Si, and P: a first-principles study. Chem Phys Lett 643:27–33CrossRefGoogle Scholar
  42. 42.
    Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  43. 43.
    MedeA, Materials design. Accessed 31 Jul 2018
  44. 44.
    Hammer B, Hansen LB, Norskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59:7413–7421CrossRefGoogle Scholar
  45. 45.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements. J Chem Phys 132:154104CrossRefGoogle Scholar
  46. 46.
    Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360CrossRefGoogle Scholar
  47. 47.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  48. 48.
    Schwebel T, Frank J, Fleischer M, Meixner H, Kohl C-D (2000) A new type of gas sensor based on thermionic charge carrier emission. Sens Actuators B Chem 68:157–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations