Diesel-induced transparency of plastically deformed high-density polyethylene


High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11


  1. 1

    Bunn CW (1939) The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the > CH2 group. Trans Faraday Soc 35:482–491

    Article  Google Scholar 

  2. 2

    Strobl GR (2007) The physics of polymers. Springer-Verlag, Berlin, pp 165–225

    Google Scholar 

  3. 3

    Sperling LH (2005) The crystalline state. In: Sperling LH (ed) Introduction to physical polymer science. Wiley, London, pp 239–324

    Google Scholar 

  4. 4

    Baccaredda M, Schiavinato G (1954) Refractive indices of polythenes with different degrees of branching. J Polym Sci 12:155–158

    Article  Google Scholar 

  5. 5

    Bryant WMD (1947) Polythene fine structure. J Polym Sci 2:547–564

    Article  Google Scholar 

  6. 6

    Hay IL, Keller A (1965) Polymer deformation in terms of spherulites. Kolloid Z u Z Polym 204:43–74

    Article  Google Scholar 

  7. 7

    Meinel G, Morosoff N, Peterlin A (1970) Plastic deformation of polyethylene. I. Change of morphology during drawing of polyethylene of high density. J Polym Sci Part A-2: Polym Phys 8:1723–1740

    Article  Google Scholar 

  8. 8

    Meinel G, Peterlin A (1971) Plastic deformation of polyethylene II. Change of mechanical properties during drawing. J Polym Sci Part A-2: Polym Phys 9:67–83

    Article  Google Scholar 

  9. 9

    Pawlak A, Gałęski A (2010) Cavitation during tensile drawing of annealed high density polyethylene. Polymer 51:5771–5779

    Article  Google Scholar 

  10. 10

    Pawlak A, Gałęski A, Różański A (2014) Cavitation during deformation of semicrystalline polymers. Pro Polym Sci 39:921–958

    Article  Google Scholar 

  11. 11

    Lin L, Argon AS (1994) Structure and plastic deformation of polyethylene. J Mater Sci 29:294–323. https://doi.org/10.1007/BF01162485

    Article  Google Scholar 

  12. 12

    Różański A, Gałęski A (2011) Controlling cavitation of semicrystalline polymers during tensile drawing. Macromolecules 44:7273–7287

    Article  Google Scholar 

  13. 13

    Gałęski A, Różański A (2010) Cavitation during drawing of crystalline polymers. Macromol Symp 298:1–9

    Article  Google Scholar 

  14. 14

    Men Y, Rieger J, Homeyer J (2004) Synchrotron ultrasmall-angle X-ray scattering studies on tensile deformation of poly(1-butene). Macromolecules 37:9481–9488

    Article  Google Scholar 

  15. 15

    Lu Y, Men Y (2018) Cavitation-induced stress whitening in semi-crystalline polymers. Macromol Mater Eng 303:1800203

    Article  Google Scholar 

  16. 16

    Pawlak A (2007) Cavitation during tensile deformation of high-density polyethylene. Polymer 48:1397–1409

    Article  Google Scholar 

  17. 17

    Peterlin A (1975) Plastic deformation of polymers with fibrous structure. J Colloid Polym Sci 253:809–823

    Article  Google Scholar 

  18. 18

    Peterlin A (1975) Structural model of mechanical properties and failure of crystalline polymer solids with fibrous structure. Int J Fract 11:761–780

    Article  Google Scholar 

  19. 19

    Pawlak A, Gałęski A (2011) Cavitation during tensile drawing of semicrystalline polymers. Polimery 56:627–636

    Article  Google Scholar 

  20. 20

    Butler MF, Donald AM (1998) A real-time simultaneous small- and wide-angle X-ray scattering study of in situ polyethylene deformation at elevated temperatures. Macromolecules 3:6234–6249

    Article  Google Scholar 

  21. 21

    Jiang Z, Tang Y, Rieger J, Enderle HF, Lilge D, Roth SV, Gehrke R, Wu Z, Li Z, Li X, Men Y (2010) Structural evolution of melt-drawn transparent high-density polyethylene during heating and annealing: synchrotron small-angle X-ray scattering study. Eur Polym J 46:1866–1877

    Article  Google Scholar 

  22. 22

    Różański A, Gałęski A (2013) Plastic yielding of semicrystalline polymers affected by amorphous phase. Int J Plast 41:14–29

    Article  Google Scholar 

  23. 23

    Erdmann M, Böhning M, Niebergall U (2019) Physical and chemical effects of biodiesel storage on high-density polyethylene: evidence of co-oxidation. Polym Degrad Stabil 161:139–149

    Article  Google Scholar 

  24. 24

    Böhning M, Niebergall U, Zanotto M, Wachtendorf V (2016) Impact of biodiesel sorption on tensile properties of PE-HD for container applications. Polym Test 50:315–324

    Article  Google Scholar 

  25. 25

    Immergut EH, Mark HF (1965) Principles of plasticization. In: Platzer NAJ (ed) Plasticization and plasticizer processes, advances in chemistry. American Chemical Society, Washington, pp 1–26

    Google Scholar 

  26. 26

    Wypych G (2017) Handbook of plasticizers, 3rd edn. ChemTec Publishing, Toronto, pp 3–6

    Google Scholar 

  27. 27

    Böhning M, Niebergall U, Adam A, Stark W (2014) Impact of biodiesel sorption on mechanical properties of polyethylene. Polym Test 34:17–24

    Article  Google Scholar 

  28. 28

    ISO 293:2004 (2004) Plastics—compression moulding of test specimens of thermoplastic materials, pp 1–6

  29. 29

    ISO 527-2:2012 (2012) Plastics—determination of tensile properties—part 2: test conditions for moulding and extrusion plastics, pp 1–11

  30. 30

    EN 590:2013+AC:2014 (2014) Automotive fuels—Diesel—Requirements and test methods; German version, pp 1–11

  31. 31

    Wunderlich B, Cormier CM (1967) Heat of fusion of polyethylene. J Polym Sci Part A-2: Polym Phys 5:987–988

    Article  Google Scholar 

  32. 32

    Laue MTF, Wagner EH (1960) Röntgenstrahl-Interferenzen. Akademische Verlagsgesellschaft, Frankfurt am Main, pp 123–140

    Google Scholar 

  33. 33

    Hentschel MP, Hosemann R, Lange A, Uther B, Brückner R (1987) Small-angle X-ray refraction in metal wires, glass-fibers and hard elastic propylenes. Acta Crystallogr A 43:506–513

    Article  Google Scholar 

  34. 34

    Evsevleev S, Müller BR, Lange A, Kupsch A (2019) Refraction driven X-ray caustics at curved interfaces. Nucl Instrum Methods Phys Res A 916:275–282

    Article  Google Scholar 

  35. 35

    Hentschel MP, Harbich KW, Ekenhorst D, Schors J (1997) X-ray topographic methods for composite fibre and matrix orientation. Materialprüfung 39:121–123

    Google Scholar 

  36. 36

    Kupsch A, Lange A, Hentschel MP, Onel Y, Wolk T, Staude A, Ehrig K, Müller BR, Bruno G (2013) Evaluating porosity in cordierite-based diesel particulate filter materials. Part 1—X-ray refraction. J Ceram Sci Tech 4:169–176

    Google Scholar 

  37. 37

    Kupsch A, Müller BR, Lange A, Bruno G (2017) Microstructure characterization of ceramics via 2D and 3D X-ray refraction techniques. J Eur Ceram Soc 37:1879–1889

    Article  Google Scholar 

  38. 38

    Müller BR, Cooper RC, Lange A, Kupsch A, Wheeler M, Hentschel MP, Staude A, Pandey A, Shyam A, Bruno G (2018) Stress-induced microcrack density evolution in ß-eucryptite ceramics: experimental observations and possible route to strain hardening. Acta Mater 144:627–641

    Article  Google Scholar 

  39. 39

    Nellesen J, Laquai L, Müller BR, Kupsch A, Hentschel MP, Anar NB, Soppa E, Tillmann W, Bruno G (2018) In situ analysis of damage evolution in an Al/Al2O3 MMC under tensile load by synchrotron X-ray refraction imaging. J Mater Sci 53:6021–6032. https://doi.org/10.1007/s10853-017-1957-x

    Article  Google Scholar 

  40. 40

    Laquai R, Müller BR, Kasperovich G, Haubrich J, Requena G, Bruno G (2018) X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti–6Al–4V. Mater Res Lett 6:130–135

    Article  Google Scholar 

  41. 41

    Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press Inc. Ltd, London, pp 53–83

    Google Scholar 

  42. 42

    Fensch-Kleemann FE, Harbich KW, Hentschel MP (2002) Microstructural characterisation of porous ceramics by X-Ray refraction topography, cfi/Ber. DKG 79:35–38

    Google Scholar 

  43. 43

    Zhang Y, Ben Jar BY, Xue S, Li L (2019) Quantification of strain-induced damage in semi-crystalline polymers: a review. J Mater Sci 54:62–82. https://doi.org/10.1007/s10853-018-2859-2

    Article  Google Scholar 

  44. 44

    Gooch JW (ed) (2007) Encyclopedic dictionary of polymers. Springer, New York, p 1081

    Google Scholar 

  45. 45

    Wunderlich B, Czornyj G (1977) A study of equilibrium melting of polyethylene. Macromolecules 10:906–913

    Article  Google Scholar 

  46. 46

    Bartczak Z, Gałęski A (2010) Plasticity of semicrystalline polymers. Macromol Symp 294:67–90

    Article  Google Scholar 

  47. 47

    Jiang Z, Tang Y, Rieger J, Enderle HF, Lilge D, Roth SV, Gehrke R, Wu Z, Li Z, Men Y (2009) Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer 50:4101–4111

    Article  Google Scholar 

  48. 48

    Kono A, Miyakawa N, Kawadai S, Goto Y, Maruoka T, Yamamoto M, Horibe H (2010) Effect of cooling rate after polymer melting on electrical properties of high-density polyethylene/Ni composites. Polym J 42:587–591

    Article  Google Scholar 

  49. 49

    Hiss R, Hobeika S, Lynn C, Strobl G (1999) Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers. A comparative study. Macromolecules 32:4390–4403

    Article  Google Scholar 

Download references


The authors kindly acknowledge Oliver Schwarze and Fabian Roth for the preparation of the tensile test specimens. We thank Thomas Rybak for the assistance with DSC measurements and Lothar Buchta for the assistance with optical pictures. This study was supported by BAM within the project “Microbial Induced Corrosion” in the focus area “Material”.

Author information



Corresponding author

Correspondence to Andreas Kupsch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erdmann, M., Kupsch, A., Müller, B.R. et al. Diesel-induced transparency of plastically deformed high-density polyethylene. J Mater Sci 54, 11739–11755 (2019). https://doi.org/10.1007/s10853-019-03700-8

Download citation