Skip to main content

Advertisement

Log in

Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly efficient water splitting based on solar energy is one of the most attractive research focuses in the energy field. Searching for more candidate photocatalysts that can work under visible-light irradiation is highly demanded. Herein, using first-principles calculations based on density functional theory, we show that the two-dimensional silicon chalcogenides, i.e., SiX (X = S, Se, Te) monolayers, as semiconductors with 2.43–3.00 eV band gaps, exhibit favorable band edge positions for photocatalytic water splitting. The optical calculations demonstrate that the SiX monolayers have pronounced optical absorption in the visible-light region. Moreover, the band gaps and band edge positions of silicon chalcogenides monolayers can be tuned by applying biaxial strain or increasing the number of layers, in order to better fit the redox potentials of water. The combined electronic properties, high carrier mobility and optical properties render the two-dimensional SiX a promising photocatalyst for water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kirubasankar B, Murugadoss V, Lin J et al (2018) In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10:20414–20425. https://doi.org/10.1039/C8NR06345A

    Article  Google Scholar 

  2. Le K, Wang Z, Wang F et al (2019) Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans 48:5193–5202. https://doi.org/10.1039/C9DT00615J

    Article  Google Scholar 

  3. Lin C, Hu L, Cheng C et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72. https://doi.org/10.1016/j.electacta.2017.11.051

    Article  Google Scholar 

  4. Lou X, Lin C, Luo Q et al (2017) Crystal structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem 4:3171–3180. https://doi.org/10.1002/celc.201700816

    Article  Google Scholar 

  5. Yuan L, Zhang Y, Wang Z et al (2019) Plant oil and lignin-derived elastomers via thermal azide-alkyne cycloaddition click chemistry. ACS Sustain Chem Eng 7:2593–2601. https://doi.org/10.1021/acssuschemeng.8b05617

    Article  Google Scholar 

  6. Zhao W, Li X, Yin R et al (2019) Urchin-like NiO–NiCo2O4 heterostructure microsphere catalysts for enhanced rechargeable non-aqueous Li–O2 batteries. Nanoscale 11:50–59. https://doi.org/10.1039/C8NR08457B

    Article  Google Scholar 

  7. Zhao Y-H, Tian X-L, Zhao B et al (2018) Precipitation sequence of middle al concentration alloy using the inversion algorithm and microscopic phase field model. Sci Adv Mater 10:1793–1804. https://doi.org/10.1166/sam.2018.3430

    Article  Google Scholar 

  8. Ge R, Wang S, Su J et al (2018) Phase-selective synthesis of self-supported RuP films for efficient hydrogen evolution electrocatalysis in alkaline media. Nanoscale 10:13930–13935. https://doi.org/10.1039/C8NR03554G

    Article  Google Scholar 

  9. Shindume LH, Zhao Z, Wang N et al (2019) Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. J Nanosci Nanotechnol 19:839–849. https://doi.org/10.1166/jnn.2019.15745

    Article  Google Scholar 

  10. Tian J, Shao Q, Zhao J et al (2019) Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. J Colloids Interface Sci 541:18–29. https://doi.org/10.1016/j.jcis.2019.01.069

    Article  Google Scholar 

  11. Wang C, Lan F, He Z et al (2019) Iridium—based catalysts for solid polymer electrolyte electrocatalytic water splitting. Chemsuschem 12:1576–1590. https://doi.org/10.1002/cssc.201802873

    Article  Google Scholar 

  12. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107:4022–4047. https://doi.org/10.1021/cr050193e

    Article  Google Scholar 

  13. Ball M, Wietschel M (2009) The future of hydrogen—opportunities and challenges. Int J Hydrogen Energy 34:615–627. https://doi.org/10.1016/j.ijhydene.2008.11.014

    Article  Google Scholar 

  14. Chang Kwon K, Choi S, Lee J et al (2017) Drastically enhanced hydrogen evolution activity by 2D to 3D structural transition in anion-engineered molybdenum disulfide thin films for efficient Si-based water splitting photocathodes. J Mater Chem A 5:15534–15542. https://doi.org/10.1039/C7TA03845C

    Article  Google Scholar 

  15. Hu X, Li G, Yu JC (2010) Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26:3031–3039. https://doi.org/10.1021/la902142b

    Article  Google Scholar 

  16. Liu J, Liu Y, Liu N et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974. https://doi.org/10.1126/science.aaa3145

    Article  Google Scholar 

  17. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661. https://doi.org/10.1021/jz1007966

    Article  Google Scholar 

  18. Rahman MA, Bazargan S, Srivastava S et al (2015) Defect-rich decorated TiO2 nanowires for super-efficient photoelectrochemical water splitting driven by visible light. Energy Environ Sci 8:3363–3373. https://doi.org/10.1039/C5EE01615K

    Article  Google Scholar 

  19. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570. https://doi.org/10.1021/cr1001645

    Article  Google Scholar 

  20. Sun Y, Cheng H, Gao S et al (2012) Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem 124:8857–8861. https://doi.org/10.1002/ange.201204675

    Article  Google Scholar 

  21. Zhang L, Qin M, Yu W et al (2017) Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc 164:H1086–H1090. https://doi.org/10.1149/2.0881714jes

    Article  Google Scholar 

  22. Zhang L, Yu W, Han C et al (2017) Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J Electrochem Soc 164:H651–H656. https://doi.org/10.1149/2.1531709jes

    Article  Google Scholar 

  23. Pan D, Ge S, Zhao J et al (2018) Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans 47:9765–9778. https://doi.org/10.1039/C8DT01045E

    Article  Google Scholar 

  24. Song B, Wang T, Sun H et al (2017) Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans 46:15769–15777. https://doi.org/10.1039/C7DT03003G

    Article  Google Scholar 

  25. Zhao J, Ge S, Pan D et al (2018) Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates. J Colloids Interface Sci 529:111–121. https://doi.org/10.1016/j.jcis.2018.05.091

    Article  Google Scholar 

  26. Sun H, Yang Z, Pu Y et al (2019) Zinc oxide/vanadium pentoxide heterostructures with enhanced day-night antibacterial activities. J Colloids Interface Sci 547:40–49. https://doi.org/10.1016/j.jcis.2019.03.061

    Article  Google Scholar 

  27. Zhao Z, An H, Lin J et al (2018) Progress on the Photocatalytic Reduction Removal of Chromium Contamination. Chem Rec. https://doi.org/10.1002/tcr.201800153

    Google Scholar 

  28. Dervin S, Dionysiou DD, Pillai SC (2016) 2D nanostructures for water purification: graphene and beyond. Nanoscale 8:15115–15131. https://doi.org/10.1039/C6NR04508A

    Article  Google Scholar 

  29. Varghese JO, Agbo P, Sutherland AM et al (2015) The influence of water on the optical properties of single-layer molybdenum disulfide. Adv Mater 27:2734–2740. https://doi.org/10.1002/adma.201500555

    Article  Google Scholar 

  30. Singh AK, Mathew K, Zhuang HL, Hennig RG (2015) Computational screening of 2D Materials for photocatalysis. J Phys Chem Lett 6:1087–1098. https://doi.org/10.1021/jz502646d

    Article  Google Scholar 

  31. Su T, Shao Q, Qin Z et al (2018) Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal 8:2253–2276. https://doi.org/10.1021/acscatal.7b03437

    Article  Google Scholar 

  32. Zhang X, Zhang Z, Wu D et al (2018) Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods 2:1700359. https://doi.org/10.1002/smtd.201700359

    Article  Google Scholar 

  33. Lin Z, Lin B, Wang Z et al (2019) Facile preparation of 1T/2H—Mo(S1−x Sex)2 nanoparticles for boosting hydrogen evolution reaction. ChemCatChem 11:2217–2222. https://doi.org/10.1002/cctc.201900095

    Article  Google Scholar 

  34. Sheng Y, Yang J, Wang F et al (2019) Sol–gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl Surf Sci 465:154–163. https://doi.org/10.1016/j.apsusc.2018.09.137

    Article  Google Scholar 

  35. Zhuang HL, Hennig RG (2013) Computational search for single-layer transition-metal dichalcogenide photocatalysts. J Phys Chem C 117:20440–20445. https://doi.org/10.1021/jp405808a

    Article  Google Scholar 

  36. Guo Z, Zhou J, Zhu L, Sun Z (2016) MXene: a promising photocatalyst for water splitting. J Mater Chem A 4:11446–11452. https://doi.org/10.1039/C6TA04414J

    Article  Google Scholar 

  37. Zhuang HL, Hennig RG (2013) Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem Mater 25:3232–3238. https://doi.org/10.1021/cm401661x

    Article  Google Scholar 

  38. Bai Y, Luo G, Meng L et al (2018) Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts. Phys Chem Chem Phys 20:14619–14626. https://doi.org/10.1039/C8CP01463A

    Article  Google Scholar 

  39. Fang DQ, Chen X, Gao PF et al (2017) Mono- and bilayer ZnSnN2 sheets for visible-light photocatalysis: first-principles predictions. J Phys Chem C 121:26063–26068. https://doi.org/10.1021/acs.jpcc.7b07115

    Article  Google Scholar 

  40. Zhang X, Zhao X, Wu D et al (2016) MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility. Adv Sci 3:1600062. https://doi.org/10.1002/advs.201600062

    Article  Google Scholar 

  41. Fei R, Li W, Li J, Yang L (2015) Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl Phys Lett 107:173104. https://doi.org/10.1063/1.4934750

    Article  Google Scholar 

  42. Guan S, Liu C, Lu Y et al (2018) Tunable ferroelectricity and anisotropic electric transport in monolayer β-GeSe. Phys Rev B. https://doi.org/10.1103/PhysRevB.97.144104

    Google Scholar 

  43. Jiang H, Zhao T, Ren Y et al (2017) Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Sci Bull 62:572–578. https://doi.org/10.1016/j.scib.2017.03.026

    Article  Google Scholar 

  44. Li L, Chen Z, Hu Y et al (2013) Single-layer single-crystalline SnSe nanosheets. J Am Chem Soc 135:1213–1216. https://doi.org/10.1021/ja3108017

    Article  Google Scholar 

  45. Lv X, Wei W, Sun Q et al (2017) Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility. Appl Catal B Environ 217:275–284. https://doi.org/10.1016/j.apcatb.2017.05.087

    Article  Google Scholar 

  46. Niu C, Buhl PM, Bihlmayer G et al (2015) Topological crystalline insulator and quantum anomalous Hall states in IV–VI-based monolayers and their quantum wells. Phys Rev B. https://doi.org/10.1103/PhysRevB.91.201401

    Google Scholar 

  47. Patel M, Kim H-S, Kim J (2017) Wafer-scale production of vertical SnS multilayers for high-performing photoelectric devices. Nanoscale 9:15804–15812. https://doi.org/10.1039/C7NR03370B

    Article  Google Scholar 

  48. Ramasamy P, Kwak D, Lim D-H et al (2016) Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors. J Mater Chem C 4:479–485. https://doi.org/10.1039/C5TC03667D

    Article  Google Scholar 

  49. Wan W, Liu C, Xiao W, Yao Y (2017) Promising ferroelectricity in 2D group IV tellurides: a first-principles study. Appl Phys Lett 111:132904. https://doi.org/10.1063/1.4996171

    Article  Google Scholar 

  50. Zhou X, Zhang Q, Gan L et al (2016) Booming development of group IV–VI semiconductors: fresh blood of 2D family. Adv Sci 3:1600177. https://doi.org/10.1002/advs.201600177

    Article  Google Scholar 

  51. Kamal C, Chakrabarti A, Ezawa M (2016) Direct band gaps in group IV–VI monolayer materials: binary counterparts of phosphorene. Phys Rev B 93:125428. https://doi.org/10.1103/PhysRevB.93.125428

    Article  Google Scholar 

  52. Chowdhury C, Karmakar S, Datta A (2017) Monolayer group IV–VI Monochalcogenides: low-dimensional materials for photocatalytic water splitting. J Phys Chem C 121:7615–7624. https://doi.org/10.1021/acs.jpcc.6b12080

    Article  Google Scholar 

  53. Ji Y, Yang M, Dong H et al (2017) Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light. Nanoscale 9:8608–8615. https://doi.org/10.1039/C7NR00688H

    Article  Google Scholar 

  54. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  55. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  56. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  57. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  59. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  Google Scholar 

  60. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  Google Scholar 

  61. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 78:134106. https://doi.org/10.1103/PhysRevB.78.134106

    Article  Google Scholar 

  62. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643. https://doi.org/10.1063/1.463940

    Article  Google Scholar 

  63. Zhao J, Wu L, Zhan C et al (2017) Overview of polymer nanocomposites: computer simulation understanding of physical properties. Polymer 133:272–287. https://doi.org/10.1016/j.polymer.2017.10.035

    Article  Google Scholar 

  64. Zhao Y, Deng S, Liu H et al (2018) First-principle investigation of pressure and temperature influence on structural, mechanical and thermodynamic properties of Ti3AC2 (A = Al and Si). Comput Mater Sci 154:365–370. https://doi.org/10.1016/j.commatsci.2018.07.007

    Article  Google Scholar 

  65. Zhao Y, Qi L, Jin Y et al (2015) The structural, elastic, electronic properties and Debye temperature of D022–Ni3V under pressure from first-principles. J Alloys Compd 647:1104–1110. https://doi.org/10.1016/j.jallcom.2015.05.268

    Article  Google Scholar 

  66. Chen Y, Sun Q, Jena P (2016) SiTe monolayers: Si-based analogues of phosphorene. J Mater Chem C 4:6353–6361. https://doi.org/10.1039/C6TC01138A

    Article  Google Scholar 

  67. Ding Y, Wang Y (2013) Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C 117:18266–18278. https://doi.org/10.1021/jp407666m

    Article  Google Scholar 

  68. Guan J, Zhu Z, Tománek D (2014) Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.113.046804

    Google Scholar 

  69. Kamal C, Ezawa M (2015) Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B. https://doi.org/10.1103/PhysRevB.91.085423

    Google Scholar 

  70. Mouhat F, Coudert F-X (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B. https://doi.org/10.1103/PhysRevB.90.224104

    Google Scholar 

  71. Sun Z, Zhang L, Dang F et al (2017) Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19:3288–3298. https://doi.org/10.1039/C7CE00279C

    Article  Google Scholar 

  72. Yuan J-H, Gao B, Wang W et al (2015) First-principles calculations of the electronic structure and optical properties of Y–Cu Co-Doped ZnO. Acta Phys-Chim Sin 31:1302–1308. https://doi.org/10.3866/PKU.WHXB201505081

    Google Scholar 

  73. Song Y-Q, Yuan J-H, Li L-H et al (2019) KTlO: a metal shrouded 2D semiconductor with high carrier mobility and tunable magnetism. Nanoscale 11:1131–1139. https://doi.org/10.1039/C8NR08046A

    Article  Google Scholar 

  74. Shirayama M, Kadowaki H, Miyadera T et al (2016) Optical transitions in hybrid perovskite solar cells: ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys Rev Appl 5:014012. https://doi.org/10.1103/PhysRevApplied.5.014012

    Article  Google Scholar 

  75. Yuan J, Yu N, Xue K, Miao X (2017) Ideal strength and elastic instability in single-layer 8-Pmmn borophene. RSC Adv 7:8654–8660. https://doi.org/10.1039/C6RA28454J

    Article  Google Scholar 

  76. Yuan J, Yu N, Wang J et al (2018) Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl Surf Sci 436:919–926. https://doi.org/10.1016/j.apsusc.2017.12.093

    Article  Google Scholar 

  77. Qiao M, Chen Y, Wang Y, Li Y (2018) The germanium telluride monolayer: a two dimensional semiconductor with high carrier mobility for photocatalytic water splitting. J Mater Chem A 6:4119–4125. https://doi.org/10.1039/C7TA10360C

    Article  Google Scholar 

  78. Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728. https://doi.org/10.1039/C5EE03732H

    Article  Google Scholar 

  79. Chakrapani V, Angus JC, Anderson AB et al (2007) Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318:1424–1430. https://doi.org/10.1126/science.1148841

    Article  Google Scholar 

  80. Miao N, Zhou J, Sa B et al (2017) Few-layer arsenic trichalcogenides: emerging two-dimensional semiconductors with tunable indirect-direct band-gaps. J Alloys Compd 699:554–560. https://doi.org/10.1016/j.jallcom.2016.12.351

    Article  Google Scholar 

  81. Jeon NJ, Noh JH, Kim YC et al (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13:897–903. https://doi.org/10.1038/nmat4014

    Article  Google Scholar 

  82. Ji Y, Yang M, Lin H et al (2018) Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. J Phys Chem C 122:3123–3129. https://doi.org/10.1021/acs.jpcc.7b11584

    Article  Google Scholar 

  83. Guo S, Zhu Z, Hu X et al (2018) Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale 10:8397–8403. https://doi.org/10.1039/C8NR01028E

    Article  Google Scholar 

  84. Li J, Miranda HPC, Niquet Y-M et al (2015) Phonon-limited carrier mobility and resistivity from carbon nanotubes to graphene. Phys Rev B. https://doi.org/10.1103/PhysRevB.92.075414

    Google Scholar 

  85. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80. https://doi.org/10.1103/PhysRev.80.72

    Article  Google Scholar 

  86. Qiao J, Kong X, Hu Z-X et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun. https://doi.org/10.1038/ncomms5475

    Google Scholar 

  87. Schusteritsch G, Uhrin M, Pickard CJ (2016) Single-layered Hittorf’s phosphorus: a wide-bandgap high mobility 2D material. Nano Lett 16:2975–2980. https://doi.org/10.1021/acs.nanolett.5b05068

    Article  Google Scholar 

  88. Cai Y, Zhang G, Zhang Y-W (2014) Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J Am Chem Soc 136:6269–6275. https://doi.org/10.1021/ja4109787

    Article  Google Scholar 

  89. Miao N, Xu B, Bristowe NC et al (2017) Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer. J Am Chem Soc 139:11125–11131. https://doi.org/10.1021/jacs.7b05133

    Article  Google Scholar 

  90. Dai J, Zeng XC (2015) Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew Chem Int Ed 54:7572–7576. https://doi.org/10.1002/anie.201502107

    Article  Google Scholar 

  91. Lang H, Zhang S, Liu Z (2016) Mobility anisotropy of two-dimensional semiconductors. Phys Rev B. https://doi.org/10.1103/PhysRevB.94.235306

    Google Scholar 

  92. Zhou M, Chen X, Li M, Du A (2017) Widely tunable and anisotropic charge carrier mobility in monolayer tin(ii) selenide using biaxial strain: a first-principles study. J Mater Chem C 5:1247–1254. https://doi.org/10.1039/C6TC04692D

    Article  Google Scholar 

  93. Jing Y, Ma Y, Wang Y et al (2017) Ultrathin layers of PdPX (X = S, Se): two dimensional semiconductors for photocatalytic water splitting. Chem Eur J 23:13612–13616. https://doi.org/10.1002/chem.201703683

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “The National Key Research and Development Program of China (17YFB0405601)” and the National Natural Science Foundation of China under Grant No. 11704134. K.-H. Xue received support from China Scholarship Council (No. 201806165012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kan-Hao Xue or Xiao-Min Cheng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, YL., Yuan, JH., Song, YQ. et al. Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting. J Mater Sci 54, 11485–11496 (2019). https://doi.org/10.1007/s10853-019-03699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03699-y

Navigation