Journal of Materials Science

, Volume 54, Issue 17, pp 11526–11537 | Cite as

Effect of Ti doping on the crystallography, phase, surface/interface structure and optical band gap of Ga2O3 thin films

  • Sandeep Manandhar
  • Anil K. Battu
  • Susheng Tan
  • Rahul Panat
  • V. Shutthanandan
  • C. V. RamanaEmail author
Electronic materials


The effect of titanium (Ti) doping on the crystal structure, phase, surface/interface chemistry, microstructure and optical band gap of gallium oxide (Ga2O3) (GTO) films is reported. The Ti content was varied from 0 to ~ 5 at% in co-sputtering, using Ga2O3 ceramic and Ti metal targets, deposited GTO films produced. The sputtering power to the Ti target was varied in the range of 0–100 W, while keeping the sputtering power to Ga2O3 constant at 100 W, to produce GTO films with 0–5 at% Ti. The Ti-incorporation-induced effects were significant for the crystal structure, phase, surface/interface chemistry and morphology, which in turn induce changes in the band gap. The high-resolution core-level X-ray photoelectron spectroscopy (XPS) analyses confirm that the Ga ions exist as Ga3+ in both intrinsic Ga oxide and GTO films. However, XPS data reveal the formation of Ga2O3–TiO2 films with the presence of Ti4+ ions with increasing Ti sputtering power, i.e., higher Ti contents in GTO. Evidence for the formation of nanocrystalline Ga2O3–TiO2 films was also found in the structural analyses performed using electron microscopy and grazing incidence X-ray diffraction. Significant band gap reduction (Eg ~ 0.9 eV) occurs in GTO films with increasing Ti dopant concentration from 0 to 5 at%. A correlation between the Ti dopant concentration, surface/interface chemistry, microstructure and band gap of GTO films is established.



The authors acknowledge, with pleasure, the support from the National Science Foundation (NSF) with Grant No. ECCS-1509653. CVR also acknowledges the NSF-PREM Grant #DMR-1827745.


  1. 1.
    Pearton SJ, Yang J, Cary PH, Ren F, Kim J, Tadjer MJ, Mastro MA (2018) A review of Ga2O3 materials, processing, and devices. Appl Phys Rev 5:011301CrossRefGoogle Scholar
  2. 2.
    Rubio EJ, Mates TE, Manandhar S, Nandasiri M, Shutthanandan V, Ramana CV (2016) Tungsten incorporation into gallium oxide: crystal structure, surface and interface chemistry, thermal stability, and interdiffusion. J Phys Chem C 120:26720–26735CrossRefGoogle Scholar
  3. 3.
    Rubio EJ, Ramana CV (2013) Tungsten-incorporation induced red-shift in the bandgap of gallium oxide thin films. Appl Phys Lett 102:19193CrossRefGoogle Scholar
  4. 4.
    Ogita M, Higo K, Nakanishi Y, Hatanaka Y (2001) Ga2O3 thin film for oxygen sensor at high temperature. Appl Surf Sci 175–176:721–725CrossRefGoogle Scholar
  5. 5.
    Fleischer M, Höllbauer L, Meixner H (1994) Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases. Sens Actuators B 18:119–124CrossRefGoogle Scholar
  6. 6.
    Guo D, An Y, Cui W, Cui W, Zhi Y, Zhao X, Lei M, Li L, Li P, Wu Z, Tang W (2016) Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films. Sci Rep 6:25166CrossRefGoogle Scholar
  7. 7.
    Guo D, Li P, Wu Z, Cui W, Zhao X, Lei M, Li L, Tang W (2016) Inhibition of unintentional extra carriers by Mn valence change for high insulating devices. Sci Rep 6:24190CrossRefGoogle Scholar
  8. 8.
    Suzuki R, Nakagomi S, Kokubun Y, Arai N, Ohira S (2009) Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl Phys Lett 94:222102–222103CrossRefGoogle Scholar
  9. 9.
    Patil SB, Kim IY, Gunjakar JL, Oh SM, Eom T, Kim H, Hwang SJ (2015) Phase tuning of nanostructured gallium oxide via hybridization with reduced graphene oxide for superior anode performance in li-ion battery: an experimental and theoretical study. ACS Appl Mater Interfaces 7:18679–18688CrossRefGoogle Scholar
  10. 10.
    Qian L-X, Wu Z-H, Zhang Y-Y, Lai PT, Liu X-Z, Li Y-R (2017) Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photonics 4:2203–2211CrossRefGoogle Scholar
  11. 11.
    López I, Lorenz K, Nogales E, Méndez B, Piqueras J, Alves E, García JA (2014) Study of the relationship between crystal structure and luminescence in rare-earth-implanted Ga2O3 nanowires during annealing treatments. J Mater Sci 49:1279–1285. CrossRefGoogle Scholar
  12. 12.
    Higashiwa M, Sasaki K, Kuramata A, Masui T, Amakoshi SY (2014) Development of gallium oxide power devices. Phys Status Solidi A 211:21–26CrossRefGoogle Scholar
  13. 13.
    López I, Nogales E, Méndez B, Piqueras J, Peche A, Ramirez-Castellanos J, Gonzalez-Calet JM (2013) Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires. J Phys Chem C 117:3036–3045CrossRefGoogle Scholar
  14. 14.
    Dakhel AA (2012) Structural, optical, and opto-dielectric properties of W-doped Ga2O3 thin films. J Mater Sci 47:3034–3039. CrossRefGoogle Scholar
  15. 15.
    Manandhar S, Ramana CV (2017) Direct, functional relationship between structural and optical properties in titanium-incorporated gallium oxide nanocrystalline thin films. Appl Phys Lett 110:061902CrossRefGoogle Scholar
  16. 16.
    Battu AK, Manandhar S, Shutthanandan V, Ramana CV (2017) Controlled optical properties via chemical composition tuning in molybdenum-incorporated β-Ga2O3 nanocrystalline films. Chem Phys Lett 684:363–367CrossRefGoogle Scholar
  17. 17.
    Kumar SS, Rubio EJ, Noor-A-Alam M, Martinez G, Manandhar S, Shuthanandan V (2013) Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films. J Phys Chem C 117:4194–4200CrossRefGoogle Scholar
  18. 18.
    Tang X, Huang X, Huang Y, Gou Y, Pastore J, Yang Y, Xiong Y, Qian J, Brock JD, Lu J, Abruna HD, Zhuan L (2018) High-performance Ga2O3 anode for lithium ion batteries. ACS Appl Mater Interfaces 10:5519–5526CrossRefGoogle Scholar
  19. 19.
    Wang X, Zeng X, Cao D (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63CrossRefGoogle Scholar
  20. 20.
    Du W, Wang X, Zhan J, Sun X, Kang L, Jiang F, Zhang X, Shao Q, Dong M, Liu H, Murugadoss V, Guo Z (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915CrossRefGoogle Scholar
  21. 21.
    Idrees M, Batool S, Kong J, Zhuang Q, Liu H, Shao Q, Lu N, Feng Y, Wujcik EK, Gao Q, Ding T, Wei R, Guo Z (2019) Polyborosilazane derived ceramics-nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim Acta 296:925–937CrossRefGoogle Scholar
  22. 22.
    Qi H, Teng M, Liu M, Liu S, Li J, Ya H, Teng C, Huang Z, Liu H, Shao Q, Umar A, Ding T, Gao Q, Guo Z (2019) Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci 539:332–341CrossRefGoogle Scholar
  23. 23.
    Deng W, Kang T, Liu H, Zhang J, Wang N, La N, Ma Y, Umar A, Guo Z (2018) Potassium hydroxide activated and nitrogen doped graphene with enhanced supercapacitive behavior. Sci Adv Mater 10:937–949CrossRefGoogle Scholar
  24. 24.
    Shindume L, Zhao Z, Wang N, Lu H, Umar A, Zhang J, Wu T, Guo Z (2019) Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. J Nanosci Nanotechnol 19:839–849CrossRefGoogle Scholar
  25. 25.
    Huang J, Li Y, Cao Y, Peng F, Cao Y, Liu H, Guo Z (2018) Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping. J Mater Chem A 6:13062–13074CrossRefGoogle Scholar
  26. 26.
    Mayer M, SIMNRA (1999) A simulation program for the analysis of NRA, RBS and ERDA. In: AIP Conf. Proc. AIP, pp 541–544Google Scholar
  27. 27.
    Ghosh SC, Biesinger MC, LaPierre RR, Kruse P (2007) X-ray photoelectron spectroscopic study of the formation of catalytic gold nanoparticles on ultraviolet-ozone oxidized GaAs(100) substrates. J Appl Phys 101:114322CrossRefGoogle Scholar
  28. 28.
    Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST Standard Reference database 20Google Scholar
  29. 29.
    Hollinger G, Skheyta-Kabbani R, Gendry M (1994) Oxides on GaAs and InAs surfaces: an x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers. Phys Rev B 49:11159CrossRefGoogle Scholar
  30. 30.
    Syed N, Zavabeti A, Mohiuddin M, Zhang Y Wang, Datta RS, Atkin P, Carey J, Tan C, van Emdes J (2017) Sonication-assisted synthesis of gallium oxide suspensions featuring trap state absorption: test of photochemistry. Adv Funct Mater 27:1702295CrossRefGoogle Scholar
  31. 31.
    Ramana CV, Rubio E, Barraza C, Miranda Gallardo A, McPeak S, Kotru S, Grant J (2014) Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films. Appl Phys 115:043508CrossRefGoogle Scholar
  32. 32.
    Trinchi A, Kaciulis S, Pandolfi L, Ghantasala MK, Li YX, Wlodarski W, Viticoli S, Comini E, Sberveglieri G (2004) Characterization of Ga2O3 based MRISiC hydrogen gas sensors. Sens Actuators B 103:129–135CrossRefGoogle Scholar
  33. 33.
    Ou S-L, Wuu D-S, Fu Y-C, Liu S-P, Horng R-H, Liu L, Feng Z-C (2012) Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition. Mater Chem Phys 133:700–705CrossRefGoogle Scholar
  34. 34.
    Bharti B, Kumar S, Lee H-N, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6:32355CrossRefGoogle Scholar
  35. 35.
    Xu N, Liu L, Sun X, Liu X, Han D, Wang Y, Han R, Kang J, Yu B (2008) Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories. Appl Phys Lett 92:232112CrossRefGoogle Scholar
  36. 36.
    Hussain H, Tocci G, Woolcot T, Torrelles X, Pang CL, Humphery DS, Yim CM, Grinter DC, Cabailh G, ikondoa O, Lindsay R, Zegenhang J, Michaelidas A, Thornton G (2016) Structure of a model TiO2 photocatalytic interface. Nat Mater 16:461CrossRefGoogle Scholar
  37. 37.
    González-Elipe A, Munuera G, Espinos J, Sanz J (1989) Compositional changes induced by 3.5 keV Ar + ion bombardment in Ni-Ti oxide systems: a comparative study. Surf Sci 220:368–380CrossRefGoogle Scholar
  38. 38.
    Massaro CC, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, Textor M, Spencer N (2002) Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J Mater Sci Mater Med 13:535–548CrossRefGoogle Scholar
  39. 39.
    Tao J, Luttrell T, Batzill M (2011) A two-dimensional phase of TiO2 with a reduced bandgap. Nat Chem 3:296–300CrossRefGoogle Scholar
  40. 40.
    Gupta R, Sen S (1975) Calculation of multiplet structure of core p-vacancy levels II. Phys Rev B 12:15CrossRefGoogle Scholar
  41. 41.
    Leedy KD, Chabak KD, Vasilyev V, Look DC, Boeckl JJ, Brown JL, Tetlak SE, Green AJ (2017) Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition. Appl Phys Lett 111:012103CrossRefGoogle Scholar
  42. 42.
    Ramana CV, Baghmar G, Rubio EJ, Hernandez MJ (2013) Optical constants of amorphous, transparent titanium-doped tungsten oxide thin films. ACS Appl Mater Interfaces 5:4659–4666CrossRefGoogle Scholar
  43. 43.
    Kalidindi N, Manciu F, Ramana CV (2011) Crystal structure, phase, and electrical conductivity of nanocrystalline W0.95Ti0.05O3 thin films. ACS Appl Mater Interfaces 3:863–868CrossRefGoogle Scholar
  44. 44.
    Geller S (1960) Crystal structure of -Ga2O3. J Chem Phys 33:676–684CrossRefGoogle Scholar
  45. 45.
    Egerton RF (2005) Physical principles of electron microscopy. Springer, BerlinCrossRefGoogle Scholar
  46. 46.
    Battu AK, Manandhar S, Ramana CV (2018) Nanomechanical characterization of titanium incorporated gallium oxide nanocrystalline thin films. Mater Today Nano 2:7–14CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Advanced Materials Research (CMR)University of Texas at El PasoEl PasoUSA
  2. 2.Department of Electrical and Computer Engineering, and Petersen Institute of NanoScience and EngineeringUniversity of PittsburghPittsburghUSA
  3. 3.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  4. 4.Environmental Molecular Sciences Laboratory (EMSL)Pacific Northwest National Laboratory (PNNL)RichlandUSA

Personalised recommendations