Skip to main content
Log in

A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cadmium telluride (CdTe)/Cadmium sulphide (CdS) thin-film solar cell is a potential candidate for the production of energy through photovoltaic (PV) technology, which reduces the manufacturing cost by replacing the expensive silicon wafers. Many studies have focused on the key attributes, such as wide direct band gap and high absorption coefficient, of these semiconductors (CdTe and CdS) that are widely used for the purpose of industrial production and research developments. In this article, we provide a comprehensive review on the improvement and the performance of CdTe/CdS thin-film solar cells while optimizing the various structural parameters such as front contact, the thickness of the absorbing, buffer, window layers, and back contact. Firstly, we discuss the historical background, structural developments, and the advantages of CdTe/CdS solar cells over other contemporary cells. Secondly, the effects of various structural parameters on the performance of CdTe/CdS thin-film solar cells are also included in the discussion sections. Influence of pressure, including thermal and chemical treatments, is also included for understanding the improvement in cell performance. Moreover, the impacts of all these factors on the various PV parameters (open-circuit voltage, short-circuit current density, fill factor, and conversion efficiency) are discussed and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reprinted with permission from Morales-Acevedo [17]

Figure 2

Reprinted with permission from Irvine et al. [37]

Figure 3

Reprinted with permission from Irvine et al. [37]

Figure 4

Reprinted with permission from Artegiani et al. [38]

Figure 5

Reprinted with permission from Akhlaghi and Mohammadi [43]

Figure 6

Reprinted with permission from Akhlaghi and Mohammadi [43]

Figure 7

Reprinted with permission from Mutalikdesai and Ramasesha [45]

Figure 8

Reprinted with permission from Mutalikdesai and Ramasesha [45]

Figure 9

Reprinted with permission from Heisler et al. [53]

Figure 10

Reprinted with permission from García-Alvarado et al. [60]

Figure 11

Reprinted with permission from García-Alvarado et al. [60]

Figure 12

Reprinted with permission from Flores-Marquez et la. [62]

Figure 13

Reprinted with permission from Flores-Marquez et al. [62]

Similar content being viewed by others

References

  1. Lilhare D, Sinha T, Khare A (2018) Influence of Cu doping on optical properties of (Cd–Zn) S nanocrystalline thin films: a review. J Mater Sci: Mater Electron 29:688–713

    Google Scholar 

  2. Sinha T, Lilhare D, Khare A (2018) Effects of various parameters on structural and optical properties of CBD-grown ZnS thin films: a review. J Electron Mater 47:1730–1751

    Article  Google Scholar 

  3. Bonnet D, Rabenhorst H (1972) New results on the development of a thin-film p-CdTe-n-CdS heterojunction solar cell. In: 9th Photovoltaic specialists conference, Silver Spring, Md

  4. Nakayama N, Matsumoto H, Yamaguchi K, Ikegami S, Hioki Y (1976) Ceramic thin film CdTe solar cell. Jpn J Appl Phys 15:2281

    Article  Google Scholar 

  5. Herrmann D, Kratzert P, Weeke S, Zimmer M, Djordjevic-Reiss J, Hunger R, Lindberg P, Wallin E, Lundberg O, Stolt L (2014) CIGS module manufacturing with high deposition rates and efficiencies. In: 40th Photovoltaic specialist conference IEEE, vol 40. pp 2775–2777

  6. Mitchell KW, Fahrenbruch AL, Bube RH (1977) Evaluation of the CdS/CdTe heterojunction solar cell. J Appl Phys 48:4365–4371

    Article  Google Scholar 

  7. Tyan YS (1982) Semiconductor devices having improved low-resistance contacts to p-type CdTe, and method of preparation, U.S. Patent No. 4,319,069

  8. Tyan YS, Perez-Albuerne EA (1982) Efficient thin-film CdS/CdTe solar cells. In: Proceedings of the 16th photovoltaic specialists conference IEEE

  9. Werthen JG, Fahrenbruch AL, Bube RH, Zesch JC (1983) Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells. J Appl Phys 54:2750–2756

    Article  Google Scholar 

  10. Kuribayashi K, Matsumoto H, Uda H, Komatsu Y, Nakano A, Ikegami S (1983) Preparation of low resistance contact electrode in screen printed CdS/CdTe solar cell. Jpn J Appl Phys 22:1828–1831

    Article  Google Scholar 

  11. Meyers PV (1988) Design of a thin film CdTe solar cell. Sol Cells 23:59–67

    Article  Google Scholar 

  12. Albright SP, Jordan JF, Ackerman B, Chamberlin RR (1989) Developments on CdS/CdTe photovoltaic panels at photon energy. Sol Cells 27:77–90

    Article  Google Scholar 

  13. Ohyama H, Aramoto T, Kumazawa S, Higuchi H, Arita T, Shibutani S, Nishio T, Nakajima J, Tsuji M, Hanafusa A, Hibino T (1997) 16.0% efficient thin-film CdS/CdTe solar cells. In: 26th Photovoltaic specialists conference IEEE, vol 26. pp 343–346

  14. Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77:803–814

    Article  Google Scholar 

  15. He S, Lu H, Li B, Zhang J, Zeng G, Wu L, Li W, Wang W, Feng L (2017) Study of CdTe/ZnTe composite absorbing layer deposited by pulsed laser deposition for CdS/CdTe solar cell. Mater Sci Semicond Process 67:41–45

    Article  Google Scholar 

  16. Khare A (2010) Effects of copper concentration on electro-optical and structural properties of chemically deposited nanosized (Zn–Cd) S:Cu films. J Lumin 130:1268–1274

    Article  Google Scholar 

  17. Morales-Acevedo A (2006) Thin film CdS/CdTe solar cells: research perspectives. Sol Energy 80:675–681

    Article  Google Scholar 

  18. Khare A, Bhushan S (2006) Effect of KI/LiF/CdCl2 on photoluminescent and electroluminescent properties of nanocrystalline (Zn–Cd) S:Cu films. Radiat Eff Defects Solids 161:631–644

    Article  Google Scholar 

  19. Chu TL, Chu SS, Ferekides C, Wu CQ, Britt J, Wang C (1991) 13.4% efficient thin-film CdS/CdTe solar cells. J Appl Phys 70:7608–7612

    Article  Google Scholar 

  20. Spalatu N, Hiie J, Mikli V, Krunks M, Valdna V, Maticiuc N, Raadik T, Caraman M (2015) Effect of CdCl2 annealing treatment on structural and optoelectronic properties of close spaced sublimation CdTe/CdS thin film solar cells vs deposition conditions. Thin Solid Films 582:128–133

    Article  Google Scholar 

  21. Nouhi A, Stirn RJ, Meyers PV, Liu CH (1989) High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques. J Vac Sci Technol A Vac 7:833–836

    Article  Google Scholar 

  22. Chakrabarti R, Ghosh S, Chaudhuri S, Pal AK (1999) Rapid thermal processing for the preparation of CdTe film. J Phys D Appl Phys 32:1258–1268

    Article  Google Scholar 

  23. Kumarasinghe PK, Dissanayake A, Pemasiri BM, Dassanayake BS (2017) Thermally evaporated CdTe thin films for solar cell applications: optimization of physical properties. Mater Res Bull 96:188–195

    Article  Google Scholar 

  24. Mangalhara JP, Thangaraj R, Agnihotri OP (1989) Structural, optical and photoluminescence properties of electron beam evaporated CdSe1−xTex films. Sol Energy Mater 19:157–165

    Article  Google Scholar 

  25. Chander S, Dhaka MS (2017) Optical and structural constants of CdS thin films grown by electron beam vacuum evaporation for solar cells. Thin Solid Films 638:179–188

    Article  Google Scholar 

  26. Gupta A, Compaan AD (2004) All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO:Al transparent conducting oxide. Appl Phys Lett 85:684–686

    Article  Google Scholar 

  27. Sivananthan S, Chu X, Reno J, Faurie JP (1986) Relation between crystallographic orientation and the condensation coefficients of Hg, Cd, and Te during molecular-beam-epitaxial growth of Hg1-xCdxTe and CdTe. J Appl Phys 60:1359–1363

    Article  Google Scholar 

  28. Perry S, Klemeš J, Perry I (2008) Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy 33:1489–1497

    Article  Google Scholar 

  29. Acevedo AM (2006) Can we improve the record efficiency of CdS/CdTe solar cells? Sol Energy Mater Sol Cells 90:2213–2220

    Article  Google Scholar 

  30. Reese MO, Perkins CL, Burst JM, Farrell S, Barnes TM, Johnston SW, Kuciauskas D, Gessert TA, Metzger WK (2015) Intrinsic surface passivation of CdTe. J Appl Phys 118:155305-1–155305-11

    Article  Google Scholar 

  31. Cruz JS, Perez RC, Delgado GT, Angel OZ (2015) CdS thin films doped with metal-organic salts using chemical bath deposition. Thin Solid Films 518:1791–1795

    Article  Google Scholar 

  32. Mathew X, Cruz JS, Coronado DR, Millán AR, Segura GC, Morales ER, Martínez OS, Garcia CC, Landa EP (2012) CdS thin film post-annealing and Te–S interdiffusion in a CdTe/CdS solar cell. Sol Energy 86:1023–1028

    Article  Google Scholar 

  33. Sze SM, Ng KK (2007) Physics of semiconductor devices. Willey, Hoboken

    Google Scholar 

  34. Shin SW, Agawane GL, Gang MG, Moholkar AV, Moon JH, Kim JH, Lee JY (2012) Preparation and characteristics of chemical bath deposited ZnS thin films: effects of different complexing agents. J Alloys Compd 526:25–30

    Article  Google Scholar 

  35. Altin I, Polat I, Bacaksiz E, Sokmen M (2012) ZnO and ZnS microrods coated on glass and photocatalytic activity. Appl Surf Sci 258:4861–4865

    Article  Google Scholar 

  36. Baraton MI (2010) Materials research society symposium proceedings 1209, 03

  37. Irvine SJC, Lamb DA, Barrioz V, Clayton AJ, Brooks WSM, Rugen-Hankey S, Kartopu G (2011) The role of transparent conducting oxides in metal organic chemical vapour deposition of CdTe/CdS Photovoltaic solar cells. Thin Solid Films 520:1167–1173

    Article  Google Scholar 

  38. Artegiani E, Menossi D, Salavei A, di Mare S, Romeo A (2017) Analysis of the influence on the performance degradation of CdTe solar cells by the front contact. Thin Solid Films 633:101–105

    Article  Google Scholar 

  39. Wu X, Zhou J, Duda A, Yan Y, Teeter G, Asher S, Metzger WK, Demtsu S, Wei SH, Noufi R (2007) Phase control of CuxTe film and its effects on CdS/CdTe solar cell. Thin Solid Films 515:5798–5803

    Article  Google Scholar 

  40. Garnett EC, Yang PD (2008) Silicon nanowire radial p-n junction solar cells. J Am Chem Soc 130:9224–9225

    Article  Google Scholar 

  41. Fan Z, Razavi H, Do JW, Moriwaki A, Ergen O, Chueh YL, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8:648–653

    Article  Google Scholar 

  42. Singh RS, Rangari VK, Sanagapalli S, Jayaraman V, Mahendra S, Singh VP (2004) Nano-structured CdTe, CdS and TiO2 for thin film solar cell applications. Sol Energy Mater Sol Cells 82:315–330

    Article  Google Scholar 

  43. Akhlaghi MH, Mohammadi MR (2013) Dependence of photovoltaic performance of solvothermally prepared CdS/CdTe solar cells on morphology and thickness of window and absorber layers. J Mater Sci: Mater Electron 24:3564–3574

    Google Scholar 

  44. Miyazaki T, Akisawa A, Kashiwagi T (2005) Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renew Energy 30:281–304

    Article  Google Scholar 

  45. Mutalikdesai A, Ramasesha SK (2017) Solution process for fabrication of thin film CdS/CdTephotovoltaic cell for building integration. Thin Solid Films 632:73–78

    Article  Google Scholar 

  46. Nithyayini KN, Ramasesha SK (2015) Fabrication of semi-transparent photovoltaic cell by a cost-effective technique. Metall Mater Trans E 2:157–163

    Google Scholar 

  47. Pettersson J, Törndahl T, Platzer-Björkman C, Hultqvist A, Edoff M (2013) The influence of absorber thickness on Cu (In, Ga) Se solar cells with different buffer layers. IEEE J Photovolt 3:1376–1382

    Article  Google Scholar 

  48. Kosyachenko LA, Savchuk AI, Grushko EV (2009) Dependence of efficiency of thin-film CdS/CdTe solar cell on parameters of absorber layer and barrier structure. Thin Solid Films 517:2386–2391

    Article  Google Scholar 

  49. Marsillac S, Parikh VY, Compaan AD (2007) Ultra-thin bifacial CdTe solar cell Solar energy materials and solar cells. Sol Energy Mater Sol Cells 91:1398–1402

    Article  Google Scholar 

  50. Ernst K, Belaidi A, Könenkamp R (2003) Solar cell with extremely thin absorber on highly structured substrate. Semicond Sci Technol 18:475–479

    Article  Google Scholar 

  51. Amin N, Isaka T, Yamada A, Konagai M (2001) Highly efficient 1 μm thick CdTe solar cells with textured TCOs. Sol Energy Mater Sol Cells 67:195–201

    Article  Google Scholar 

  52. Demtsu SH, Sites JR (2006) Effect of back-contact barrier on thin-film CdTe solar cells. Thin Solid Films 510:320–324

    Article  Google Scholar 

  53. Heisler C, Schnohr CS, Hädrich M, Oertel M, Kraft C, Reislöhner U, Metzner H, Wesch W (2013) Transparent CdTe solar cells with a ZnO:Al back contact. Thin Solid Films 548:627–631

    Article  Google Scholar 

  54. Chi K, Li Q, Meng X, Liu L, Ding D, Yang H, Fu W (2017) Morphological control and characterization of CdTe microstructure arrays synthesized by one-step electrodeposition. Mater Lett 194:78–80

    Article  Google Scholar 

  55. Garadkar KM, Pawar SJ, Hankare PP, Patil AA (2010) Effect of annealing on chemically deposited polycrystalline CdTe thin films. J Alloys Compd 491:77–80

    Article  Google Scholar 

  56. Burst JM, Duenow JN, Albin DS, Colegrove E, Reese MO, Aguiar JA, Jiang CS, Patel MK, Al-Jassim MM, Kuciauskas D, Swain S (2016) CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat Energy 1:16015-1–16015-7

    Google Scholar 

  57. Ichiboshi A, Hongo M, Akamine T, Dobashi T, Nakada T (2006) Ultrasonic chemical bath deposition of ZnS (O, OH) buffer layers and its application to CIGS thin-film solar cells. Sol Energy Mater Sol Cells 90:3130–3135

    Article  Google Scholar 

  58. Wang S, Fu X, Xia G, Wang J, Shao J, Fan Z (2006) Structure and optical properties of ZnS thin films grown by glancing angle deposition. Appl Surf Sci 252:8734–8737

    Article  Google Scholar 

  59. Yano S, Schroeder R, Ullrich B, Sakai H (2003) Absorption and photocurrent properties of thin ZnS films formed by pulsed-laser deposition on quartz. Thin Solid Films 423:273–276

    Article  Google Scholar 

  60. García-Alvarado GI, de Moure-Flores F, Mayén-Hernández SA, Santos-Cruz D, Rivera-Muñoz EM, Contreras-Puente GS, Pal M, Santos-Cruz J (2017) CdTe/CdS solar cells with CdTe grown at low vacuum. Vacuum 142:175–180

    Article  Google Scholar 

  61. Aguilera MA, Márquez JF, Trujillo MG, Kuwahara YM, Morales GR, Galán OV (2014) Influence of CdS thin films growth related with the substrate properties and conditions used on CBD technique. Energy Procedia 44:111–117

    Article  Google Scholar 

  62. Flores-Marquez JM, Albor-Aguilera ML, Matsumoto-Kuwabara Y, Gonzalez-Trujillo MA, Hernandez-Vasquez C, Mendoza-Perez R, Contreras-Puente GS, Tufiño-Velazquez M (2015) Improving CdS/CdTe thin film solar cell efficiency by optimizing the physical properties of CdS with the application of thermal and chemical treatments. Thin Solid Films 582:124–127

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to A. Morales-Acevedo, S.J.C. Irvine, Elisa Artegiani, M. H. Akhlaghi, A. Mutalikdesai, C. Heisler, G.I. García-Alvarado, J.M. Flores-Marquez, their co-workers, and the publishers of the journals (Elsevier B. V. Netherland and Springer Science + Business Media New York) whose works have been reviewed here. The authors acknowledge Dr. Shashikanta Tarai, Department of Humanities and Social Sciences, NIT Raipur, India, for his timely assistance in language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayush Khare.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, T., Lilhare, D. & Khare, A. A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters. J Mater Sci 54, 12189–12205 (2019). https://doi.org/10.1007/s10853-019-03651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03651-0

Navigation