Skip to main content

Advertisement

Log in

OpenIEC: an open-source code for interfacial energy calculation in alloys

  • Computation and theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, an Open-source code for Interfacial Energy Calculation (OpenIEC, https://github.com/openiec) was developed by following Kaptay’s models (Acta Mater 60(19):6804–6813, 2012; J Mater Sci 53(5):3767–3784, 2018. https://doi.org/10.1007/s10853-017-1778-y). The coupling with the CALculation of PHAse Diagram thermodynamic and molar volume databases was facilitated in OpenIEC for providing the necessary thermodynamic information. With OpenIEC, the temperature- and composition-dependent interfacial energies in alloys with any arbitrary number of components can be conveniently evaluated. In order to demonstrate the applicability and validity of OpenIEC, the benchmark tests in several model alloys in Ni and Al alloys were carried out, and the calculated interfacial energies were found to be in good agreement with the literature data. After that, the OpenIEC was applied to predict the temperature- and composition-dependent interfacial energies of coherent γ/γ’ interfaces in two Ni-based superalloys, including ternary Ni–Al–Cr and quaternary Ni–Al–Cr–Re alloys, as well as the temperature- and composition-dependent solid/liquid interfacial energies in Ni–Al–Cr and Al–Cu–Li alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Brown LM, Ham RK (1971) Strengthening methods in crystals. Elsevier, Amsterdam

    Google Scholar 

  2. Christian JW (2002) The theory of transformations in metals and alloys. Elsevier, Amsterdam

    Google Scholar 

  3. Mishin Y, Asta M, Li J (2010) Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater 58(4):1117–1151

    Article  CAS  Google Scholar 

  4. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140

    Article  CAS  Google Scholar 

  5. Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad 32(2):268–294

    Article  CAS  Google Scholar 

  6. Steinbach I (2009) Phase-field models in materials science. Modell Simul Mater Sci Eng 17(7):073001

    Article  CAS  Google Scholar 

  7. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1–2):35–50

    Article  Google Scholar 

  8. Wagner C (1961) Theory of precipitate change by redissolution. Z Elektrochem 65:581–591

    CAS  Google Scholar 

  9. Ardell AJ, Nicholson RB (1966) On the modulated structure of aged Ni-Al alloys: with an Appendix On the elastic interaction between inclusions by JD Eshelby. Acta Metall 14(10):1295–1309

    Article  CAS  Google Scholar 

  10. Calderon HA, Voorhees PW, Murray JL, Kostorz G (1994) Ostwald ripening in concentrated alloys. Acta Metall Mater 42(3):991–1000

    Article  CAS  Google Scholar 

  11. Ardell AJ (1995) Interfacial free energies and solute diffusivities from data on Ostwald ripening. Interface Sci 3(2):119–125

    Article  CAS  Google Scholar 

  12. Kuehmann CJ, Voorhees PW (1996) Ostwald ripening in ternary alloys. Metall Mater Trans A 27(4):937–943

    Article  Google Scholar 

  13. Ardell AJ (2011) A1-L12 interfacial free energies from data on coarsening in five binary Ni alloys, informed by thermodynamic phase diagram assessments. J Mater Sci 46(14):4832–4849. https://doi.org/10.1007/s10853-011-5395-x

    Article  CAS  Google Scholar 

  14. Ardell AJ (2012) Gradient energy, interfacial energy and interface width. Scr Mater 66(7):423–426

    Article  CAS  Google Scholar 

  15. Ardell AJ (2013) Trans-interface-diffusion-controlled coarsening in ternary alloys. Acta Mater 61(20):7749–7754

    Article  CAS  Google Scholar 

  16. Philippe T, Voorhees PW (2013) Ostwald ripening in multicomponent alloys. Acta Mater 61(11):4237–4244

    Article  CAS  Google Scholar 

  17. Che C, Yang S, Wei M, Zhang L, Li Q, Gao J, Du Y (2017) Microstructure, hardness and interfacial energy in Co-9Al-10 W-xNi (x = 15, 25, 35 at.%) alloys during aging. J Min Metall Sect B-Metall 53(3):303–308

    Article  CAS  Google Scholar 

  18. Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21(10):1022–1028

    Article  CAS  Google Scholar 

  19. Glicksman ME, Vold CL (1969) Determination of absolute solid-liquid interfacial free energies in metals. Acta Metall 17(1):1–11

    Article  CAS  Google Scholar 

  20. Passerone A, Eustathopoulos N, Desre P (1977) Interfacial tensions in Zn, Zn-Sn and Zn-Sn-Pb systems. J Less Common Metals 52(1):37–49

    Article  CAS  Google Scholar 

  21. Gündüz M, Hunt JD (1985) The measurement of solid-liquid surface energies in the Al–Cu. Al-Si and Pb-Sn systems. Acta Metall 33(9):1651–1672

    Article  Google Scholar 

  22. Maraşli N, Hunt JD (1996) Solid-liquid surface energies in the Al-CuAl2, Al-NiAl3 and Al-Ti systems. Acta Mater 44(3):1085–1096

    Article  Google Scholar 

  23. Keşlıoğlu K, Gündüz M, Kaya H, Çadırlı E (2004) Solid-liquid interfacial energy in the Al-Ti system. Mater Lett 58(24):3067–3073

    Article  CAS  Google Scholar 

  24. Keşlioğlu K, Maraşlı N (2004) Solid-liquid interfacial energy of the eutectoid β phase in the Al-Zn eutectic system. Mater Sci Eng A 369(1):294–301

    Article  CAS  Google Scholar 

  25. Keşlioğlu K, Ocak Y, Aksöz S, Maraşlı N, Çadırlı E, Kaya H (2010) Determination of interfacial energies for solid al solution in equilibrium with Al-Cu-Ag liquid. Met Mater Int 16(1):51–59

    Article  CAS  Google Scholar 

  26. Öztürk E, Aksöz S, Keşlioğlu K, Maraşlı N (2013) The measurement of interfacial energies for solid Sn solution in equilibrium with the Sn-Bi-Ag liquid. Mater Chem Phys 139(1):153–160

    Article  CAS  Google Scholar 

  27. Altıntas Y, Aksöz S, Keşlioğlu K, Maraşlı N (2015) Determination of thermodynamic properties of aluminum based binary and ternary alloys. J Alloy Compd 649:453–460

    Article  CAS  Google Scholar 

  28. Hoyt JJ, Asta M, Karma A (2001) Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys Rev Lett 86(24):5530

    Article  CAS  Google Scholar 

  29. Morris JR (2002) Complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys Rev B 66(14):144104

    Article  CAS  Google Scholar 

  30. Davidchack RL, Morris JR, Laird BB (2006) The anisotropic hard-sphere crystal-melt interfacial free energy from fluctuations. J Chem Phys 125(9):094710

    Article  CAS  Google Scholar 

  31. Becker CA, Olmsted D, Asta M, Hoyt JJ, Foiles SM (2007) Atomistic underpinnings for orientation selection in alloy dendritic growth. Phys Rev Lett 98(12):125701

    Article  CAS  Google Scholar 

  32. Amini M, Laird BB (2008) Crystal-melt interfacial free energy of binary hard spheres from capillary fluctuations. Phys Rev B 78(14):144112

    Article  CAS  Google Scholar 

  33. Mishin Y (2004) Atomistic modeling of the γ and γ′-phases of the Ni-Al system. Acta Mater 52(6):1451–1467

    Article  CAS  Google Scholar 

  34. Mishin Y (2014) Calculation of the γ/γ′ interface free energy in the Ni-Al system by the capillary fluctuation method. Modell Simul Mater Sci Eng 22(4):045001

    Article  CAS  Google Scholar 

  35. Price DL, Cooper BR (1995) Full-potential LMTO calculation of Ni/Ni3Al interface energies. In: MRS Proceedings, Cambridge Univ Press, p 463

  36. Wolverton C, Zunger A (1999) Magnetic destabilization of Ni7Al. Phys Rev B 59(19):12165–12168

    Article  CAS  Google Scholar 

  37. Amouyal Y, Mao Z, Seidman DN (2008) Segregation of tungsten at γ′(L12)/γ(fcc) interfaces in a Ni-based superalloy: an atom-probe tomographic and first-principles study. Appl Phys Lett 93(20):201905

    Article  CAS  Google Scholar 

  38. Hin C, Lépinoux J, Neaton JB, Dresselhaus M (2011) From the interface energy to the solubility limit of aluminium in nickel from first-principles and Kinetic Monte Carlo calculations. Mater Sci Eng B 176(9):767–771

    Article  CAS  Google Scholar 

  39. Mao Z, Booth-Morrison C, Plotnikov E, Seidman DN (2012) Effects of temperature and ferromagnetism on the γ-Ni/γ′-Ni3Al interfacial free energy from first principles calculations. J Mater Sci 47(21):7653–7659. https://doi.org/10.1007/s10853-012-6399-x

    Article  CAS  Google Scholar 

  40. Mao Z, Booth-Morrison C, Sudbrack CK, Martin G, Seidman DN (2012) Kinetic pathways for phase separation: an atomic-scale study in Ni-Al-Cr alloys. Acta Mater 60(4):1871–1888

    Article  CAS  Google Scholar 

  41. Woodward C, van de Walle A, Asta M, Trinkle DR (2014) First-principles study of interfacial boundaries in Ni–Ni3Al. Acta Mater 75:60–70

    Article  CAS  Google Scholar 

  42. Liu XL, Shang S-L, Hu Y-J, Wang Y, Du Y, Liu Z-K (2017) Insight into γ-Ni/γ′-Ni3Al interfacial energy affected by alloying elements. Mater Des 133:39–46

    Article  CAS  Google Scholar 

  43. Li X, Saunders N, Miodownik A (2002) The coarsening kinetics of γ′ particles in nickel-based alloys. Metall Mater Trans A 33(11):3367–3373

    Article  Google Scholar 

  44. Nishizawa T, Ohnuma I, Ishida K (2001) Correlation between interfacial energy and phase diagram in ceramic-metal systems. J Phase Equilib 22(3):269–275

    Article  CAS  Google Scholar 

  45. Silva ACE, Ågren J, Clavaguera-Mora MT, Djurovic D, Gomez-Acebo T, Lee BJ, Liu ZK, Miodownik P, Seifert HJ (2007) Applications of computational thermodynamics—the extension from phase equilibrium to phase transformations and other properties. CALPHAD-Comput Coupling Phase Diagr Thermochem 31(1):53–74

    Article  CAS  Google Scholar 

  46. Becker R (1938) Die Keimbildung bei der Ausscheidung in metallischen Mischkristallen. Ann Phys 424(1–2):128–140

    Article  Google Scholar 

  47. Turnbull D (1955) Impurities and imperfections. American Society of Metals, Cleveland, p 121

    Google Scholar 

  48. Sonderegger B, Kozeschnik E (2009) Generalized nearest-neighbor broken-bond analysis of randomly oriented coherent interfaces in multicomponent fcc and bcc structures. Metall Mater Trans A 40(3):499–510

    Article  CAS  Google Scholar 

  49. Sonderegger B, Kozeschnik E (2010) Interfacial energy of diffuse phase boundaries in the generalized broken-bond approach. Metall Mater Trans A 41(12):3262–3269

    Article  CAS  Google Scholar 

  50. Kaptay G (2012) On the interfacial energy of coherent interfaces. Acta Mater 60(19):6804–6813

    Article  CAS  Google Scholar 

  51. Kaptay G (2018) On the solid/liquid interfacial energies of metals and alloys. J Mater Sci 53(5):3767–3784. https://doi.org/10.1007/s10853-017-1778-y

    Article  CAS  Google Scholar 

  52. Ta N, Zhang L, Tang Y, Chen W, Du Y (2015) Effect of temperature gradient on microstructure evolution in Ni-Al-Cr bond coat/substrate systems: a phase-field study. Surf Coat Technol 261:364–374

    Article  CAS  Google Scholar 

  53. Zhou J, Zhong J, Chen L, Zhang L, Du Y, Liu Z-K, Mayrhofer PH (2017) Phase equilibria, thermodynamics and microstructure simulation of metastable spinodal decomposition in c-Ti1- xAlxN coatings. Calphad 56:92–101

    Article  CAS  Google Scholar 

  54. Otis R, Liu Z-K (2017) Pycalphad: CALPHAD-based computational thermodynamics in Python. J Open Res Softw 5(1):1

    Article  Google Scholar 

  55. Butler JAV (1932) The thermodynamics of the surfaces of solutions. Proc R Soc A 135(827):348–375

    Article  CAS  Google Scholar 

  56. Kaptay G (2015) Partial surface tension of components of a solution. Langmuir 31(21):5796–5804

    Article  CAS  Google Scholar 

  57. Korozs J, Kaptay G (2017) Derivation of the Butler equation from the requirement of the minimum Gibbs energy of a solution phase, taking into account its surface area. Colloids Surf A 533:296–301

    Article  CAS  Google Scholar 

  58. Kaptay G (2018) The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Adv Colloid Interface Sci 256:163–192

    Article  CAS  Google Scholar 

  59. Tallon JL (1980) The entropy change on melting of simple substances. Phys Lett A 76(2):139–142

    Article  Google Scholar 

  60. Thermodynamic databases: http://www.thermocalc.com/products-services/databases/. Accessed 9 Feb 2019

  61. Lu Z, Zhang L (2017) Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys. Mater Des 116:427–437

    Article  CAS  Google Scholar 

  62. Zhang L, Wang J, Du Y, Hu R, Nash P, Lu X-G, Jiang C (2009) Thermodynamic properties of the Al-Fe-Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD. Acta Mater 57(18):5324–5341

    Article  CAS  Google Scholar 

  63. Lu X-G, Selleby M, Sundman B (2005) Theoretical modeling of molar volume and thermal expansion. Acta Mater 53(8):2259–2272

    Article  CAS  Google Scholar 

  64. Scipy.optimize.minimize: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html. Accessed 9 Feb 2019

  65. Du Y, Clavaguera N (1996) Thermodynamic assessment of the Al-Ni system. J Alloy Compd 237(1):20–32

    Article  CAS  Google Scholar 

  66. Kamara AB, Ardell AJ, Wagner CNJ (1996) Lattice misfits in four binary Ni-Base γ/γ’ alloys at ambient and elevated temperatures. Metall Mater Trans A 27(10):2888–2896

    Article  Google Scholar 

  67. Baldan A (2002) Review Progress in Ostwald ripening theories and their applications to the γ′-precipitates in nickel-base superalloys Part II Nickel-base superalloys. J Mater Sci 37(12):2379–2405. https://doi.org/10.1023/A:1015408116016

    Article  CAS  Google Scholar 

  68. Pyczak F, Devrient B, Mughrabi H (2004) The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction. Superalloys 2004:827–836

    Article  Google Scholar 

  69. Kaptay G (2012) On the tendency of solutions to tend toward ideal solutions at high temperatures. Metall Mater Trans A 43(2):531–543

    Article  CAS  Google Scholar 

  70. Adamson AW (1990) Physical chemistry of surfaces, 5th edn. John Wiley and Sons Inc., New York

    Google Scholar 

  71. Hallstedt B, Gröbner J, Hampl M, Schmid-Fetzer R (2016) Calorimetric measurements and assessment of the binary Cu–Si and ternary Al–Cu–Si phase diagrams. CALPHAD 53:25–38

    Article  CAS  Google Scholar 

  72. Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al-Ni system. J Alloy Compd 247(1–2):20–30

    Article  CAS  Google Scholar 

  73. Witusiewicz VT, Hecht U, Fries SG, Rex S (2005) The Ag-Al-Cu system: II. A thermodynamic evaluation of the ternary system. J Alloy Compd 387(1–2):217–227

    Article  CAS  Google Scholar 

  74. Ansara I, Dinsdale AT, Rand MH (1998) Definition of thermochemical and thermophysical properties to provide a database for the development of new light alloys, Cost 507. Off Publ, Luxembourg

    Google Scholar 

  75. Tang Y, Du Y, Zhang L, Yuan X, Kaptay G (2012) Thermodynamic description of the Al-Mg-Si system using a new formulation for the temperature dependence of the excess Gibbs energy. Thermochim Acta 527:131–142

    Article  CAS  Google Scholar 

  76. Engin S, Böyük U, Maraşlı N (2009) Determination of interfacial energies in the Al-Ag and Sn-Ag alloys by using Bridgman type solidification apparatus. J Alloy Compd 488(1):138–143

    Article  CAS  Google Scholar 

  77. Gündüz M, Hunt JD (1989) Solid-liquid surface energy in the Al-Mg system. Acta Metall 37(7):1839–1845

    Article  Google Scholar 

  78. Bulla A, Carreno-Bodensiek C, Pustal B, Berger R, Bührig-Polaczek A, Ludwig A (2007) Determination of the solid-liquid interface energy in the Al-Cu-Ag system. Metall Mater Trans A 38(9):1956–1964

    Article  CAS  Google Scholar 

  79. Kaptay G (2015) Approximated equations for molar volumes of pure solid fcc metals and their liquids from zero Kelvin to above their melting points at standard pressure. J Mater Sci 50(2):678–687. https://doi.org/10.1007/s10853-014-8627-z

    Article  CAS  Google Scholar 

  80. Lu X-G, Selleby M, Sundman B (2005) Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. CALPHAD 29(1):68–89

    Article  CAS  Google Scholar 

  81. Singman CN (1984) Atomic volume and allotropy of the elements. J Chem Educ 61(2):137–142

    Article  CAS  Google Scholar 

  82. Schafrik R, Sprague R (2004) Gas turbine materials. Adv Mater Process 5:29–34

    Google Scholar 

  83. Stringer J (1999) The role of the coating and superalloy system in enabling advanced land-based combustion turbine development. ASM International, Gas Turbine Materials Technology (USA), pp 3–12

  84. Huang W, Chang YA (1999) Thermodynamic properties of the Ni-Al-Cr system. Intermetallics 7(8):863–874. https://doi.org/10.1016/S0966-9795(98)00138-1

    Article  CAS  Google Scholar 

  85. Huang W, Chang YA (1999) A thermodynamic description of the Ni-Al-Cr-Re system. Mater Sci Eng A 259(1):110–119

    Article  Google Scholar 

  86. Yoon KE, Noebe RD, Seidman DN (2007) Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni-Cr-Al superalloy. II: analysis of the coarsening behavior. Acta Mater 55(4):1159–1169

    Article  CAS  Google Scholar 

  87. Umantsev A, Olson G (1993) Ostwald ripening in multicomponent alloys. Scripta Metallurgica et Materialia 29(8):1135–1140

    Article  CAS  Google Scholar 

  88. Gayle FW, Heubaum FH, Pickens JR (1990) Structure and properties during aging of an ultra-high strength Al-Cu-Li-Ag-Mg alloy. Scripta Metallurgica Et Materiala 24(1):79–84

    Article  CAS  Google Scholar 

  89. Rioja RJ, Liu J (2012) The evolution of Al-Li base products for aerospace and space applications. Metall Mater Trans A 43(9):3325–3337

    Article  CAS  Google Scholar 

  90. Yang X, Zhang L, Sobolev S, Du Y (2018) Kinetic phase diagrams of ternary Al-Cu-Li system during rapid solidification: a phase-field study. Materials 11(2):260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Key Research and Development Program of China (Grant Nos. 2016YFB0301101, and 2017YFB0701700), the Youth Talent Project of Innovation-driven Plan at Central South University (Grant No. 2019CX027) and the Hunan Provincial Science and Technology Program of China (Grant No. 2017RS3002)—Huxiang Youth Talent Plan—is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhong, J., Wang, J. et al. OpenIEC: an open-source code for interfacial energy calculation in alloys. J Mater Sci 54, 10297–10311 (2019). https://doi.org/10.1007/s10853-019-03639-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03639-w

Navigation