Skip to main content
Log in

Controllable preparation of methyltriethoxysilane xerogel nanofibers

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, the controllable preparation of silicone xerogel nanofiber without the addition of a carrier polymer is becoming more and more attractive. The methyltriethoxysilane (MTES) sol prepared using MTES/H2O/ethanol in a molar ratio of 1:5:6 under acidic catalysis conditions has excellent spinnability in a long span of spinning time. Further, pure silicone nanofibers with different gelation times were prepared by electrospinning. The influence of gelation time on the colloidal particle morphology and size, cross-linking degree, and viscosity of as-synthesized silicone sols was studied in depth with SEM, DLS, and ATR-FTIR, and the effects on the morphology, hydrophobicity, and thermal stability of as-prepared xerogel nanofibers were also determined. As the gel time increased, there was a higher increase in the colloidal particle size, cross-linking degree, and viscosity of sol. The xerogel nanofibers with long gelation time exhibited higher hydrophobicity and thermal stability due to sufficient hydrolysis and condensation. The optimum gelation time was approximately 200 h, and the optimum viscosity range was in between 300 and 1000 cp, which were obtained for stable fiber jet and for preparing uniform and continuous xerogel nanofibers with excellent physical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Li D, McCann JT, Xia YN (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89(6):1861–1869

    Article  Google Scholar 

  2. Gualandi C, Celli A, Zucchelli A, Focarete ML (2015) Advances in polymer science. Springer, New York

    Google Scholar 

  3. Lee C, Jo SM, Choi J, Baek KY, Truong YB, Kyratzis IL, Shul YG (2013) SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48:3665–3671. https://doi.org/10.1007/s10853-013-7162-7

    Article  Google Scholar 

  4. Henry N, Clouet J, Le Visage C et al (2017) Silica nanofibers as a new drug delivery system: a study of the protein-silica interactions. J Mater Chem B 5(16):2908–2920

    Article  Google Scholar 

  5. Yamaguchi T, Sakai S, Watanabe R, Tarao T, Kawakami K (2010) Heat treatment of electrospun silicate fiber substrates enhances cellular adhesion and proliferation. J Biosci Bioeng 109(3):304–306

    Article  Google Scholar 

  6. Zhang X, Shao C, Zhang Z et al (2012) In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity. ACS Appl Mater Interfaces 4(2):785–790

    Article  Google Scholar 

  7. Tong H, Mutlu BR, Wackett LP, Aksan A (2013) In situ generation of well-dispersed ZnO quantum dots on electrospun silica nanotubes with high photocatalytic activity. Mater Lett 111:234–237

    Article  Google Scholar 

  8. Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19(6):1231–1238

    Article  Google Scholar 

  9. Xu R, Jia M, Zhang Y, Li F (2012) Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes. Microporous Mesoporous Mater 149(1):111–118

    Article  Google Scholar 

  10. Lim HS, Baek JH, Park K, Shin HS, Kim J, Cho JH (2010) Multifunctional hybrid fabrics with thermally stable superhydrophobicity. Adv Mater 22(19):2138–2141

    Article  Google Scholar 

  11. Dong Y, Lin H, Jin Q, Li L, Wang D, Zhou D, Qu F (2013) Synthesis of mesoporous carbon fibers with a high adsorption capacity for bulky dye molecules. J Mater Chem A 1(25):7391–7398

    Article  Google Scholar 

  12. Liu Y, Yang P, Li J, Matras-Postolek K, Yue Y, Huang B (2016) Formation of SiO2@SnO2 core-shell nanofibers and their gas sensing properties. RSC Adv 6(16):13371–13376

    Article  Google Scholar 

  13. Pang Z, Nie Q, Zhu Y, Ge M, Chen M (2019) Enhanced ammonia sensing characteristics of CeO2-decorated SiO2/PANI free-standing nanofibrous membranes. J Mater Sci 54:2333–2342. https://doi.org/10.1007/s10853-018-2981-1

    Article  Google Scholar 

  14. Hu M, Kang W, Zhong Z, Cheng B, Xing W (2018) Porphyrin-functionalized hierarchical porous silica nanofiber membrane for rapid HCl gas detection. Ind Eng Chem Res 57(34):11668–11674

    Article  Google Scholar 

  15. Textor T, Mahltig B (2008) Nanosols and textiles. World Scientific, New Jersey

    Google Scholar 

  16. Huang JF (2005) Sol–gel principle and technology. Chemical Industry Press, Beijing

    Google Scholar 

  17. Tang C, Ozcam AE, Stout B, Khan SA (2012) Effect of pH on protein distribution in electrospun PVA/BSA composite nanofibers. Biomacromolecules 13(5):1269–1278

    Article  Google Scholar 

  18. Lee SW, Kim YU, Choi Park TY, Joo YL, Lee SG (2007) Preparation of SiO2/TiO2 composite fibers by sol–gel reaction and electrospinning. Mater Lett 61(3):889–893

    Article  Google Scholar 

  19. Li XH, Shao CL, Liu YC (2007) A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning. Langmuir 23(22):10920–10923

    Article  Google Scholar 

  20. Choi SS, Lee SG, Im SS, Kim SH, Joo YL (2003) Silica nanofibers from electrospinning/sol–gel process. J Mater Sci Lett 22(12):891–893. https://doi.org/10.1023/A:1024475022937

    Article  Google Scholar 

  21. Geltmeyer J, De Roo J, Van den Broeck F, Martins JC, De Buysser K, De Clerck K (2016) The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers. J Sol–Gel Sci Technol 77(2):453–462

    Article  Google Scholar 

  22. McDonagh C, Bowe P, Mongey K, MacCraith BD (2002) Characterisation of porosity and sensor response times of sol–gel-derived thin films for oxygen sensor applications. J Non-Cryst Solids 306:138–148

    Article  Google Scholar 

  23. Bredereck K, Effenberger F, Tretter M (2011) Preparation and characterization of silica aquasols. J Colloid Interface Sci 360(2):408–414

    Article  Google Scholar 

  24. Iimura K, Oi T, Suzuki M, Hirota M (2010) Preparation of silica fibers and non-woven cloth by electrospinning. Adv Powder Technol 21:64–68

    Article  Google Scholar 

  25. Freyer A, Savage NO (2014) Electrospun silica nanofiber mats: effects of sol viscosity and application to thin layer chromatography. American Chemical Society, Washington

    Book  Google Scholar 

  26. Malay O, Yilgor I, Menceloglu YZ (2013) Effects of solvent on TEOS hydrolysis kinetics and silica particle size under basic conditions. J Sol–Gel Sci Technol 67(2):351–361

    Article  Google Scholar 

  27. Jiang H, Zheng Z, Wang X (2008) Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib Spectrosc 46(1):1–7

    Article  Google Scholar 

  28. Sadasivan S, Dubey AK, Li Y, Abidi N, Rasmussen DH (1998) Alcoholic solvent effect on silica synthesis-NMR and DLS investigation. J Sol–Gel Sci Technol 12(1):5–14

    Article  Google Scholar 

  29. Chu B (1991) Laser light scattering: basic principles and practice. Academic Press, Massachusetts

    Google Scholar 

  30. Yang J, Chen J, Song J (2009) Studies of the surface wettability and hydrothermal stability of methyl-modified silica films by FT-IR and Raman spectra. Vib Spectrosc 50(2):178–184

    Article  Google Scholar 

  31. Sas I, Gorga RE, Joines JA, Thoney KA (2012) Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J Polym Sci Polym Phys 50(12):824–845

    Article  Google Scholar 

  32. Bahloul-Hourlier D, Latournerie J, Dempsey P (2005) Reaction pathways during the thermal conversion of polysiloxane precursors into oxycarbide ceramics. J Eur Ceram Soc 25(7):979–985

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Number 21374008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Gao, N., Gong, Y. et al. Controllable preparation of methyltriethoxysilane xerogel nanofibers. J Mater Sci 54, 10130–10140 (2019). https://doi.org/10.1007/s10853-019-03629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03629-y

Navigation