Skip to main content
Log in

Preparation of manganese porphyrin/niobium tungstate nanocomposites for enhanced electrochemical detection of nitrite

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sandwich-structured MnTMPyP/NbWO6 nanocomposites were synthesized by the electrostatic self-assembly of the manganese porphyrin (MnTMPyP) cations with the exfoliated niobium tungstate [NbWO6] nanosheets. Various analytical techniques such as X-ray diffraction patterns, scanning electron micrograph, transmission electron microscope, energy-dispersive spectroscopy, UV–Vis absorption spectra and Fourier transform infrared spectra were used to determine the structure, composition and morphology of the as-prepared samples. It can be concluded that MnTMPyP cations were inserted into interlayer spacing of the [NbWO6] nanosheets and arranged in an inclined single layer at 58°. The MnTMPyP/NbWO6 nanocomposites modified electrode exhibited excellent electro-catalytic oxidation activity toward nitrite in 0.2 mol L−1 and pH 7.0 phosphate buffer solution. Additionally, the oxidation peak current is proportional to the square root of scan rates, indicating that the redox reaction of nitrite is a typical diffusion-controlled process. Also, the sensitivity and detection limit for nitrite at the modified electrode was evaluated as 3.80 × 10−5 mol L−1 over a concentration range from 1.20 × 10−4 to 3.57 × 10−3 mol L−1 by using differential pulse voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rosca V, Duca M, de Groot MT, Koper MT (2009) Nitrogen cycle electrocatalysis. Chem Rev 109:2209–2244

    Article  Google Scholar 

  2. Zhang ML, Huang DK, Cao Z, Liu YQ, He JL, Xiong JF, Yin YL (2015) Determination of trace nitrite in pickled food with a nano-composite electrode by electrodepositing ZnO and Pt nanoparticles on MWCNTs substrate. LWT Food Sci Technol 64:663–670

    Article  Google Scholar 

  3. Daniel WL, Han MS, Lee JS, Mirkin CA (2009) Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131:6362–6363

    Article  Google Scholar 

  4. Wu L, Zhang X, Wang M, He L, Zhang Z (2018) Preparation of Cu2O/CNTs composite and its application as sensing platform for detecting nitrite in water environment. Measurement 128:189–196

    Article  Google Scholar 

  5. Wang H, Wan N, Ma L, Wang Z, Cui B, Han W, Chen Y (2018) A novel and simple spectrophotometric method for detection of nitrite in water. Analyst 143:4555–4558

    Article  Google Scholar 

  6. Hussain I, Ahamad KU, Nath P (2016) Low-cost, robust, and field portable smartphone platform photometric sensor for fluoride level detection in drinking water. Anal Chem 89:767–775

    Article  Google Scholar 

  7. Zhu N, Xu Q, Li S, Gao H (2009) Electrochemical determination of nitrite based on poly (amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochem Commun 11:2308–2311

    Article  Google Scholar 

  8. Liu QH, Yan XL, Guo JC, Wang DH, Lei L, Yan FY, Chen LG (2009) Spectrofluorimetric determination of trace nitrite with a novel fluorescent probe. Spectrochim Acta 73:789–793

    Article  Google Scholar 

  9. Zhang Y, Su Z, Li B, Zhang L, Fan D, Ma H (2016) Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite. ACS Appl Mater Int 8:12344–12351

    Article  Google Scholar 

  10. Yue XF, Zhang ZQ, Yan HT (2004) Flow injection catalytic spectrophotometric simultaneous determination of nitrite and nitrate. Talanta 62:97–101

    Article  Google Scholar 

  11. Kikura-Hanajiri R, Martin RS, Lunte SM (2002) Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Anal Chem 74:6370–6377

    Article  Google Scholar 

  12. Tsikas D (2000) Simultaneous derivatization and quantification of the nitric oxide metabolites nitrite and nitrate in biological fluids by gas chromatography/mass spectrometry. Anal Chem 72:4064–4072

    Article  Google Scholar 

  13. Rajalakshmi K, John SA (2015) Highly sensitive determination of nitrite using FMWCNTs-conducting polymer composite modified electrode. Sens Actuators B Chem 215:119–124

    Article  Google Scholar 

  14. Zhang S, Li B, Sheng Q, Zheng J (2016) Electrochemical sensor for sensitive determination of nitrite based on the CuS–MWCNT nanocomposites. J Electroanal Chem 769:118–123

    Article  Google Scholar 

  15. Mani V, Periasamy AP, Chen SM (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78

    Article  Google Scholar 

  16. Liu C, Zhu H, Zhu Y, Dong P, Hou H, Xu Q, Hou W (2018) Ordered layered N-doped KTiNbO5/gC3N4 heterojunction with enhanced visible light photocatalytic activity. Appl Catal B Environ 228:54–63

    Article  Google Scholar 

  17. Li J, Zhang X, Pan B, Xu J, Liu L, Ma J, Tong Z (2016) Application of a nanostructured composite material constructed by self-assembly of titanoniobate nanosheets and cobalt porphyrin to electrocatalytic reduction of oxygen. Chin J Chem 34:1021–1026

    Article  Google Scholar 

  18. Liu C, Zhang C, Wang J, Xu Q, Chen X, Wang C, Hou W (2018) N-doped CsTi2NbO7@gC3N4 core–shell nanobelts with enhanced visible light photocatalytic activity. Mater Lett 217:235–238

    Article  Google Scholar 

  19. Li J, Pan B, Xu J, Wang M, Zhang X, Liu L, Tong Z (2017) Nanotubes formed by exfoliation of HTaWO6. Chem Lett 46:597–598

    Article  Google Scholar 

  20. Ali Z, Khan I, Rahman M, Ahmad R, Ahmad I (2016) Electronic structure of the LiAA’O6 (A = Nb, Ta, and A’ = W, Mo) ceramics by modified Becke–Johnson potential. Opt Mater 58:466–475

    Article  Google Scholar 

  21. Pan B, Xu J, Zhang X, Li J, Wang M, Ma J, Tong Z (2018) Electrostatic self-assembly behaviour of exfoliated Sr2Nb3O10 nanosheets and cobalt porphyrins: exploration of non-noble electro-catalysts towards hydrazine hydrate oxidation. J Mater Sci 53:6494–6504. https://doi.org/10.1007/s10853-018-2033-x

    Article  Google Scholar 

  22. Sun Y, Deng JP, Tu ZY, Ma JJ (2016) Preparation and electrochemical performance of manganese porphyrin/titanate intercalated nanocomposite. Mater Sci Eng 137:012031

    Google Scholar 

  23. Xu J, Pan B, Li J, Zhang X, Wang M, Tong Z (2017) Electrocatalytic activity towards oxygen reduction reaction of laminar nanocomposite LaNb2O7/CoIIITMPyP prepared via the exfoliation/restacking method. Micro Nano Lett 12:731–734

    Article  Google Scholar 

  24. Miyamoto N, Yamamoto H, Kaito R, Kuroda K (2002) Formation of extraordinarily large nanosheets from K4Nb6O17 crystals. Chem Commun 0:2378–2379

    Article  Google Scholar 

  25. Bizeto MA, Shiguihara AL, Constantino VR (2009) Layered niobate nanosheets: building blocks for advanced materials assembly. J Mater Chem 19:2512–2525

    Article  Google Scholar 

  26. Ma J, Yang M, Chen Y, Liu L, Zhang X, Wang M, Tong Z (2015) Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Mater Lett 150:122–125

    Article  Google Scholar 

  27. Ma J, Zhang Z, Yang M, Wu Y, Feng X, Liu L, Tong Z (2016) Intercalated methylene blue between calcium niobate nanosheets by ESD technique for electrocatalytic oxidation of ascorbic acid. Microporous Mesoporous Mater 221:123–127

    Article  Google Scholar 

  28. Xu J, Wang M, Pan B, Li J, Xia B, Zhang X, Tong Z (2017) Electrostatic self-assembly of exfoliated niobate nanosheets (Nb3O8 ) and cobalt porphyrins (CoIIITMPyP) utilized for rapid construction of intercalated nanocomposite and exploration of electrocatalysis towards oxygen reduction. Funct Mater Lett 10:1750070

    Article  Google Scholar 

  29. Kung CW, Chang TH, Chou LY, Hupp JT, Farha OK, Ho KC (2015) Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochem Commun 58:51–56

    Article  Google Scholar 

  30. Wu H, Fan S, Jin X, Zhang H, Chen H, Dai Z, Zou X (2014) Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal Chem 86:6285–6290

    Article  Google Scholar 

  31. Kemmegne-Mbouguen JC, Angnes L (2015) Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode. Sens Actuators B Chem 212:464–471

    Article  Google Scholar 

  32. Winnischofer H, de Souza Lima S, Araki K, Toma HE (2003) Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection. Anal Chim Acta 480:97–107

    Article  Google Scholar 

  33. Xu J, Xia B, Wang M, Fan Z, Zhang X, Ma J, Tong Z (2018) A biosensor consisting of Ca2Nb3O10 substrates and functional molecule manganese porphyrins (MnTMPyP) utilized for the determinations of nitrite. Funct Mater Lett 11:1850053

    Article  Google Scholar 

  34. Wang M, Liu Y, Zhang X, Fan Z, Tong Z (2018) Development of sandwich-structured cobalt porphyrin/niobium molybdate nanosheets catalyst for oxygen reduction. J Mater Res 33:4199–4206

    Article  Google Scholar 

  35. Wang M, Xu J, Zhang X, Fan Z, Tong Z (2018) Fabrication of a new self-assembly compound of CsTi2NbO7 with cationic cobalt porphyrin utilized as an ascorbic acid sensor. Appl Biochem Biotechnol 185:834–846

    Article  Google Scholar 

  36. Hu LF, Li R, He J, Da LG, Lv W, Hu JS (2015) Structure and photocatalytic performance of layered HNbWO6 nanosheet aggregation. J Nanophotonics 9:093041

    Article  Google Scholar 

  37. Pan B, Zhao W, Zhang X, Li J, Xu J, Ma J, Tong Z (2016) Research on the self-assembly of exfoliated perovskite nanosheets (LaNb2O7 ) and cobalt porphyrin utilized for the electrocatalytic oxidation of ascorbic acid. RSC Adv 6:46388–46393

    Article  Google Scholar 

  38. He J, Li QJ, Tang Y, Yang P, Li A, Li R, Li HZ (2012) Characterization of HNbMoO6, HNbWO6 and HTiNbO5 as solid acids and their catalytic properties for esterification reaction. Appl Catal A Gen 443:145–152

    Article  Google Scholar 

  39. Prasad GK, Takei T, Arimoto K, Yonesaki Y, Kumada N, Kinomura N (2006) Nanocomposites based on exfoliated NbWO6 nanosheets and ionic polyacetylenes. Solid State Ionics 177:197–201

    Article  Google Scholar 

  40. Luo B, Chen M, Zhang Z, Xu J, Li D, Xu D, Shi W (2017) Highly efficient visible-light-driven photocatalytic degradation of tetracycline by a Z-scheme gC3N4/Bi3TaO7 nanocomposite photocatalyst. Dalton Trans 46:8431–8438

    Article  Google Scholar 

  41. Liu C, Wu Q, Ji M, Zhu H, Hou H, Yang Q, Hou W (2017) Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J Alloy Compd 723:1121–1131

    Article  Google Scholar 

  42. Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc 128:4872–4880

    Article  Google Scholar 

  43. Wang Y, Dong R, Li A, Hu LF, He J (2016) Characterization of modified α-LiNbWO6 layered materials and their catalytic performance for toluene nitration. Optoelectron Adv Mater 10:102–107

    Google Scholar 

  44. Tao T, Zhang X, Liu L, Ma J, Zhang D, Pan B, Tong Z (2014) Preparation and electrochemical behaviour study of layered Bi2SrTa2O9 with a cationic manganese porphyrin. Micro Nano Lett 9:909–912

    Article  Google Scholar 

  45. Ma J, Wu J, Zheng J, Liu L, Zhang D, Xu X, Tong Z (2012) Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobite. Microporous Mesoporous Mater 151:325–329

    Article  Google Scholar 

  46. Wu M, Wang Y, Wei Z, Wang L, Zhuo M, Zhang J, Ma J (2018) Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. J Mater Chem A 6:10918–10925

    Article  Google Scholar 

  47. Wang L, Wang Y, Wu M, Wei Z, Cui C, Mao M, Ma J (2018) Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc–air batteries. Small 14:1800737

    Article  Google Scholar 

  48. Sousa AL, Santos WJ, Luz RC, Damos FS, Kubota LT, Tanaka AA, Tanaka SM (2008) Amperometric sensor for nitrite based on copper tetrasulphonated phthalocyanine immobilized with poly-l-lysine film. Talanta 75:333–338

    Article  Google Scholar 

  49. Zhang X, Wang M, Li D, Liu L, Ma J, Gong J, Tong Z (2013) Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J Solid State Electron 17:3177–3184

    Article  Google Scholar 

  50. Armijo F, Goya MC, Reina M, Canales MJ, Arévalo MC, Aguirre MJ (2007) Electrocatalytic oxidation of nitrite to nitrate mediated by Fe(III) poly-3-aminophenyl porphyrin grown on five different electrode surfaces. J Mol Catal A Chem 268:148–154

    Article  Google Scholar 

  51. do Carmo DR, Paim LL, Metzker G, Dias Filho NL, Stradiotto NR (2010) A novel nanostructured composite formed by interaction of copper octa (3-aminopropyl) octasilsesquioxane with azide ligands: preparation, characterization and a voltammetric application. Mater Res Bull 45:1263–1270

    Article  Google Scholar 

  52. Ojani R, Raoof JB, Zarei E (2008) Poly (ortho-toluidine) modified carbon paste electrode: a sensor for electrocatalytic reduction of nitrite. Electroanalysis 20:379–385

    Article  Google Scholar 

  53. Pan B, Ma J, Zhang X, Li J, Liu L, Zhang D, Tong Z (2015) A laminar nanocomposite constructed by self-assembly of exfoliated α-ZrP nanosheets and manganese porphyrin for use in the electrocatalytic oxidation of nitrite. J Mater Sci 50:6469–6476. https://doi.org/10.1007/s10853-015-9205-8

    Article  Google Scholar 

  54. Hu F, Chen S, Wang C, Yuan R, Yuan D, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46

    Article  Google Scholar 

  55. Liu SY, Chen YP, Fang F et al (2008) Innovative solid-state microelectrode for nitrite determination in a nitrifying granule. Environ Sci Technol 42:4467–4471

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jiangsu Province (BK20161294, BK20160434), Lianyungang Science Project (CG1602), the University Science Research Project of Jiangsu Province (15KJB430004), Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_2607), the Jiangsu Marine Resources Development and Research Institute (LYG52105-2018045), China Postdoctoral Science Foundation (2018M632283), Industry-University-Research Collaboration Project of Jiangsu Province (BY2018281), and Huaihai Institute of Technology Graduate Practice Innovation Project (XKYCXX2017-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Zhiwei Tong.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Sun, L., Wu, S. et al. Preparation of manganese porphyrin/niobium tungstate nanocomposites for enhanced electrochemical detection of nitrite. J Mater Sci 54, 10204–10216 (2019). https://doi.org/10.1007/s10853-019-03526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03526-4

Navigation