Skip to main content
Log in

Carbon sphere-based hierarchical architecture for electrode materials: the role of copolymer composition and pyrolysis temperature

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have developed a general methodology to realize surface coating and encapsulation of electrode materials in hierarchical graphite-like carbon matrix and studied how the composition of the copolymer (as the precursor of the graphite-like carbon) and pyrolysis temperature affect the performance of the electrode material. The typical anode material, anatase TiO2, has been used as an example to have encapsulated and distributed the TiO2 nanoparticles in the poly (acrylonitrile-co-styrene) matrix to form hybrid spheres (HSs) Then, the HSs are converted to TiO2/carbon anode materials after appropriate pyrolysis. The copolymers with different ratios of acrylonitrile to styrene from 3:7 to 5:5 have been synthesized, and the pyrolysis is performed in the temperature range from 550 to 850 °C. It is found that both the composition of the copolymer and the pyrolysis temperature can strongly affect the performances of the final TiO2/C anode materials. A proper design optimization is necessary to obtain the electrode materials with the desired performance. Under the optimized conditions, the capacity of the cell with the synthesized TiO2/C as the anode and Li as the reference has reached above 200 mAh g−1 at a current density of 500 mA g−1 and stays stably around 170 mAh g−1 after 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  Google Scholar 

  2. Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6:156–183

    Article  Google Scholar 

  3. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for li-ion batteries. Adv Mater 21:4593–4607

    Article  Google Scholar 

  4. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Proietti Zaccaria R, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  Google Scholar 

  5. Peled E, Menachem C, Bar-Tow D, Melman A (1996) Improved graphite anode for lithium-ion batteries chemically: bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143:L4–L7

    Article  Google Scholar 

  6. Kucinskis G, Bajars G, Kleperis J (2013) Graphene in lithium ion battery cathode materials: a review. J Power Sources 240:66–79

    Article  Google Scholar 

  7. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  Google Scholar 

  8. Ren J-G, Wu Q-H, Tang H, Hong G, Zhang W, Lee S-T (2013) Germanium-graphene composite anode for high-energy lithium batteries with long cycle life. J Mater Chem A 1:1821–1826

    Article  Google Scholar 

  9. Qin J, Zhang X, Zhao N et al (2015) In situ preparation of interconnected networks constructed by using flexible graphene/Sn sandwich nanosheets for high-performance lithium-ion battery anodes. J Mater Chem A 3:23170–23179

    Article  Google Scholar 

  10. Wang Y, Wei H, Lu Y, Wei S, Wujcik E, Guo Z (2015) Multifunctional carbon nanostructures for advanced energy storage applications. Nanomaterials 5:755–777

    Article  Google Scholar 

  11. Li X, Wang C (2013) Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application. J Mater Chem A 1:165–182

    Article  Google Scholar 

  12. Xiang H, Zhang K, Ji G et al (2011) Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49:1787–1796

    Article  Google Scholar 

  13. Fan Z-J, Yan J, Wei T et al (2011) Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano 5:2787–2794

    Article  Google Scholar 

  14. Cao S, Feng X, Song Y et al (2016) In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries. ACS Appl Mater Interfaces 8:1073–1079

    Article  Google Scholar 

  15. Sun B, Chen Z, Kim H-S, Ahn H, Wang G (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349

    Article  Google Scholar 

  16. Liu Z, Lu T, Song T, Yu X-Y, Lou XW, Paik U (2017) Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ Sci 10:1576–1580

    Article  Google Scholar 

  17. Liu N, Lu Z, Zhao J et al (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192

    Article  Google Scholar 

  18. Das S, Li J, Hui R (2015) Simulation of the impact of Si shell thickness on the performance of Si-coated vertically aligned carbon nanofiber as Li-ion battery anode. Nanomaterials 5:2268–2278

    Article  Google Scholar 

  19. Dhanabalan A, Li X, Agrawal R, Chen C, Wang C (2013) Fabrication and characterization of SnO2/graphene composites as high capacity anodes for Li-ion batteries. Nanomaterials 3:606–614

    Article  Google Scholar 

  20. Eftekhari A (2017) Low voltage anode materials for lithium-ion batteries. Energy Storage Mater 7:157–180

    Article  Google Scholar 

  21. Jin L, Zeng G, Wu H, Niederberger M, Morbidelli M (2016) A poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for lithium-ion batteries. J Mater Chem A 4:11481–11490

    Article  Google Scholar 

  22. Zhang Y, Tang Y, Li W, Chen X (2016) Nanostructured TiO2-based anode materials for high-performance rechargeable lithium-ion batteries. ChemNanoMat 2:764–775

    Article  Google Scholar 

  23. Su D, Dou S, Wang G (2015) Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem Mater 27:6022–6029

    Article  Google Scholar 

  24. Bach S, Pereira-Ramos JP, Willman P (2010) Investigation of lithium diffusion in nano-sized rutile TiO2 by impedance spectroscopy. Electrochim Acta 55:4952–4959

    Article  Google Scholar 

  25. Yan D-J, Zhu X-D, Mao Y-C et al (2017) Hierarchically organized CNT@TiO2@Mn3O4 nanostructures for enhanced lithium storage performance. J Mater Chem A 5:17048–17055

    Article  Google Scholar 

  26. Pan L, Liu Y, Xie X, Ye X, Zhu X (2016) Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2(B)@Mn3O4 yolk–membrane–shell superstructures for ultrafast lithium storage. Nano Res 9:2057–2069

    Article  Google Scholar 

  27. Yan D-J, Zhu X-D, Wang K-X et al (2016) Facile and elegant self-organization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material for lithium-ion batteries. J Mater Chem A 4:4900–4907

    Article  Google Scholar 

  28. Xu H, Zhu X-D, Sun K-N, Liu Y-T, Xie X-M (2015) Elaborately designed hierarchical heterostructures consisting of carbon-coated TiO2(B) nanosheets decorated with Fe3O4 nanoparticles for remarkable synergy in high-rate lithium storage. Adv Mater Interfaces 2:1500239

    Article  Google Scholar 

  29. Pan L, Zhu X-D, Xie X-M, Liu Y-T (2015) Smart hybridization of TiO2 nanorods and Fe3O4 nanoparticles with pristine graphene nanosheets: hierarchically nanoengineered ternary heterostructures for high-rate lithium storage. Adv Funct Mater 25:3341–3350

    Article  Google Scholar 

  30. Jin L, Wu H, Morbidelli M (2015) Synthesis of water-based dispersions of polymer/TiO2 hybrid nanospheres. Nanomaterials 5:1454–1468

    Article  Google Scholar 

  31. Suresh C, Biju V, Mukundan P, Warrier KGK (1998) Anatase to rutile transformation in sol–gel titania by modification of precursor. Polyhedron 17:3131–3135

    Article  Google Scholar 

  32. Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695

    Article  Google Scholar 

  33. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742

    Article  Google Scholar 

  34. Zdravkov BD, Čermák JJ, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Cent Eur J Chem 5:385–395

    Google Scholar 

  35. Beltzung A, Klaue A, Colombo C, Wu H, Storti G, Morbidelli M (2018) Polyacrylonitrile nanoparticle-derived hierarchical structure for CO2 capture. Energy Technol 6:1–11

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Suisse National Science Foundation (Grant No. 200020_165917) is greatly acknowledged. The research was also supported by the Global Energy Interconnection Research Institute Europe GmbH (Agreement No. SGRIKXJSKF[2017]632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Wu, H. Carbon sphere-based hierarchical architecture for electrode materials: the role of copolymer composition and pyrolysis temperature. J Mater Sci 54, 8226–8235 (2019). https://doi.org/10.1007/s10853-019-03501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03501-z

Navigation