Skip to main content
Log in

Mechanical properties and pervaporation separation performance of CTAB-modified cage-structured POSS-incorporated PVA membrane

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Permselective polymeric membranes are important materials for the efficient separation of organic solvents and azeotropic mixtures. In this work, we address an effective strategy to the fabrication of novel high-performance membranes of crosslinked poly(vinyl alcohol) (PVA) by incorporating chemically modified cage-structured polyhedral oligomeric silsesquioxane (m-POSS) through solution casting method. The fabricated PVA/m-POSS system showed excellent mechanical stability as well as good pervaporation performance for the separation of isopropanol (IPA)–water azeotropic mixture. Scanning electron micrographs and atomic force microscopy analysis revealed the homogeneous dispersion of m-POSS in PVA matrix. Differential scanning calorimetric studies showed the rigidification of crosslinked PVA matrix by the incorporation of m-POSS. Tensile strength and Young’s modulus of PVA matrix were increased remarkably to 200% and 740%, respectively, in the presence of 5 wt% of m-POSS. Moreover, the membranes exhibited excellent water selectivity, hydrophilicity and excellent anti-fouling properties compared to traditional hydrophilic membranes. At lower filler loading (1.0 wt%), 300% and 200% increase in selectivity and permeance were observed for PVA/m-POSS system over crosslinked PVA. The excellent mechanical properties and other comprehensive properties revealed the potential of the PVA/m-POSS system for the effective separation of azeotropic IPA–water mixture. Modified Maxwell–Stefan model was applied for the theoretical estimation of permeation flux and it was in good agreement with the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Scheme 3
Figure 10

Similar content being viewed by others

References

  1. Cheng X, Pan F, Wang M, Li W, Song Y, Liu G, Yang H, Gao B, Wu H, Jiang Z (2017) Hybrid membranes for pervaporation separations. J Membr Sci 541:329–346

    Article  Google Scholar 

  2. Salehian P, Chung TS (2017) Thermally treated ammonia functionalized graphene oxide/polyimide membranes for pervaporation dehydration of isopropanol. J Membr Sci 528:231–242

    Article  Google Scholar 

  3. Nagasawa H, Matsuda N, Kanezashi M, Yoshioka T, Tsuru T (2016) Pervaporation and vapor permeation characteristics of BTESE-derived organosilica membranes and their long-term stability in a high-water-content IPA/water mixture. J Membr Sci 498:336–344

    Article  Google Scholar 

  4. Narkkun T, Jenwiriyakul W, Amnuaypanich S (2017) Dehydration performance of double-network poly(vinyl alcohol) nanocomposite membranes (PVAs-DN). J Membr Sci 528:284–295

    Article  Google Scholar 

  5. Xia LL, Li CL, Wang Y (2016) In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations. J Membr Sci 498:263–275

    Article  Google Scholar 

  6. Wu G, Jiang M, Zhang T, Jia Z (2016) Tunable pervaporation performance of modified MIL-53(Al)-NH2/poly(vinyl alcohol) mixed matrix membranes. J Membr Sci 507:72–80

    Article  Google Scholar 

  7. Shan L, Gong L, Fan H, Ji S, Zhang G (2017) Spray-assisted biomineralization of a superhydrophilic water uptake layer for enhanced pervaporation dehydration. J Membr Sci 522:183–191

    Article  Google Scholar 

  8. Kurşun F, Işıklan N (2016) Development of thermo-responsive poly(vinyl alcohol)-g-poly(N-Isopropylacrylamide) copolymeric membranes for separation of isopropyl alcohol/water mixtures via pervaporation. J Ind Eng Chem 41:91–104

    Article  Google Scholar 

  9. Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  Google Scholar 

  10. Chen J, Gao Y, Liu W, Shi X, Li L, Wang Z, Zhang Y, Guo X, Liu G, Li W, Beake BD (2015) The influence of dehydration on the interfacial bonding, microstructure and mechanical properties of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon 94:845–855

    Article  Google Scholar 

  11. Sharma SK, Prakash J, Sudarshan K, Sen D, Mazumder S, Pujari PK (2015) Structure at interphase of poly(vinyl alcohol)–SiC nanofiber composite and its impact on mechanical properties: positron annihilation and small-angle X-ray scattering studies. Macromolecules 48:5706–5713

    Article  Google Scholar 

  12. Tanaka K, Chujo Y (2012) Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem 22:1733–1746

    Article  Google Scholar 

  13. Swapna VP, Selvin Thomas P, Suresh KI, Saranya V, Rahana MP, Stephen R (2015) Thermal properties of poly(vinyl alcohol)(PVA)/halloysite nanotubes reinforced nanocomposites. Int J Plast Technol 19:124–136

    Article  Google Scholar 

  14. Fang Y, Ha H, Shanmuganathan K, Ellison CJ (2016) Polyhedral oligomeric silsesquioxane-containing thiol–ene fibers with tunable thermal and mechanical properties. ACS Appl Mater Interface 8:11050–11059

    Article  Google Scholar 

  15. Liao WH, Yang SY, Hsiao ST, Wang YS, Li SM, Ma CCM, Tien HW, Zeng SJ (2014) Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites. ACS Appl Mater Interface 6:15802–15812

    Article  Google Scholar 

  16. McMullin E, Rebar HT, Mather PT (2016) Biodegradable thermoplastic elastomers incorporating POSS: synthesis, microstructure, and mechanical properties. Macromolecules 49:3769–3779

    Article  Google Scholar 

  17. Zhou H, Yea Q, Xu J (2017) Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mat Chem Front 1:212–230

    Article  Google Scholar 

  18. Zhanga W, Müller AHE (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Poly Sci 38:1121–1162

    Article  Google Scholar 

  19. Liu L, Hu Y, Song L, Gu XZ, Ni Z (2011) Fabrication of lamellar nanostructure from cage-like poly-anion silicate and surfactant by template-directed synthesis. J Compos Mater 45:307–319

    Article  Google Scholar 

  20. Swapna VP, Jose T, George SC, Thomas S, Stephen R (2018) Pervaporation separation of azeotropic mixture of tetrahydrofuran—water system using nanostructured polyhedral oligomeric silsesquioxane embedded poly(vinyl alcohol). J Appl Poly Sci 135:47060–47069

    Google Scholar 

  21. Shang HM, Wang Y, Limmer SJ, Chou TP, Takahashi K, Cao GZ (2005) Optically transparent superhydrophobic silica-based films. Thin Solid Films 472:37–43

    Article  Google Scholar 

  22. Tsou CH, An QF, Lo SC, Guzman MD, Hung WS, Hu CC, Lee KR, Lai JY (2015) Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J Membr Sci 477:93–100

    Article  Google Scholar 

  23. Jiang SD, Tang G, Bai ZM, Wang Y-Y, Hu Y, Song L (2014) Surface fictionalization of MoS2 with POSS for enhancing thermal, flame-retardant and mechanical properties in PVA composites. RSC Adv 4:3253–3262

    Article  Google Scholar 

  24. Song P, Xu Z, Guo Q (2013) Bioinspired strategy to reinforce PVA with improved toughness and thermal properties via hydrogen-bond self-assembly. ACS Macro Lett 2(12):1100–1104

    Article  Google Scholar 

  25. Yu DS, Kuila T, Kim NH, Lee JH (2014) Enhanced properties of aryl diazonium salt-functionalized graphene/poly(vinyl alcohol) composites. Chem Eng J 245:311–322

    Article  Google Scholar 

  26. Swapna VP, Ponnamma D, Sadasivuni KK, Thomas S, Stephen R (2017) Effect of nanostructured polyhedral oligomeric silsesquioxane on the physical properties of poly(vinyl alcohol). J Appl Polym Sci 134:45447–45456

    Article  Google Scholar 

  27. Guth E (1945) Theory of filler reinforcement. J Appl Phys 16:20–25

    Article  Google Scholar 

  28. Dong Y, Chaudhary D, Ploumis C, Lau KT (2011) Correlation of mechanical performance and morphological structures of epoxy micro/nanoparticulate composites. Compos Part A 42:1483–1492

    Article  Google Scholar 

  29. Zare Y, Daraei A, Vatani M, Aghasafari P (2014) An analysis of interfacial adhesion in nanocomposites from recycled polymers. Comput Mater Sci 81:612–616

    Article  Google Scholar 

  30. Liao YL, Hu CC, Lai JY, Liu YL (2017) Crosslinked polybenzoxazine based membrane exhibiting in situ self promoted separation performance for pervaporation dehydration on isopropanol aqueous solutions. J Membr Sci 531:10–15

    Article  Google Scholar 

  31. Takaba H (2007) Molecular simulation of pressure-driven fluid flow in nanoporous membranes. J Chem Phys 127:054703–054709

    Article  Google Scholar 

  32. Ghosh UK, Pradhan NC, Adhikari B (2006) Separation of water and O-chlorophenol by pervaporation using HTPB-based polyurethaneurea membranes and application of modified Maxwell–Stefan equation. J Membr Sci 272:93–102

    Article  Google Scholar 

  33. Izak P, Bartovska L, Friess K, Sipek M, Uchytil P (2003) Description of binary liquid mixtures transport through non-porous membrane by modified Maxwell–Stefan equations. J Membr Sci 214:293–309

    Article  Google Scholar 

  34. Jose T, George SC, Maya MG, Maria HJ, Wilson R, Thomas S (2014) Effect of bentonite clay on the mechanical, thermal, and pervaporation performance of the poly(vinyl alcohol) nanocomposite membranes. Ind Eng Chem Res 53:16820–16831

    Article  Google Scholar 

  35. Das P, Ray SK, Kuila SB, Samanta HS, Singha NR (2011) Systematic choice of crosslinker and filler for pervaporation membrane: a case study with dehydration of isopropyl alcohol–water mixtures by polyvinyl alcohol membranes. Sep Purif Technol 81:159–173

    Article  Google Scholar 

Download references

Acknowledgement

The corresponding author Ranimol Stephen is thankful to DST-SERB (Project No. SR/FTP/PS-123/2012), New Delhi, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranimol Stephen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swapna, V.P., Thomas, S.P., Jose, T. et al. Mechanical properties and pervaporation separation performance of CTAB-modified cage-structured POSS-incorporated PVA membrane. J Mater Sci 54, 8319–8331 (2019). https://doi.org/10.1007/s10853-019-03479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03479-8

Navigation