Synthesis and encapsulation of all inorganic perovskite nanocrystals by microfluidics


All inorganic perovskite nanocrystals (AIPNCs) have attracted tremendous research interest due to their fascinating properties in the field of photoelectron. Conventional synthesis of AIPNCs is usually conducted by using batch reactions under gas protection at high temperatures. Herein, an automated microreactor platform consisting of flow-focusing microfluidics is firstly applied to synthesize AIPNCs without gas protection at room temperature. The nucleation and growth is based on the ultrafast mixing and phase separation in low-toxicity solvent. The AIPNCs formed in the microreactor have good crystallinity and narrow size distribution. Meanwhile, the flow-focusing microfluidics also can be used to encapsulate AIPNCs into templated microspheres to improve their stability against temperature, light and water. Furthermore, the as-constructed AIPNC spheres exhibiting linear temperature response represent their promising microthermometer application. It is envisioned that the microfluidic technique provides another alternative to synthesize Ni2+-doped, Ce3+-doped, Yb3+-doped, Bi3+-substituted AIPNCs or organic–inorganic hybrid perovskite nanocrystals and to fabricate templated AIPNC materials and devices.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1

    Protesescu L, Yakunin S, Bodnarchuk MI et al (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 6:3692–3696

    Article  CAS  Google Scholar 

  2. 2

    Song J, Li J, Li X et al (2015) Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27:7162–7167

    Article  CAS  Google Scholar 

  3. 3

    Lim SC, Lin HP, Tsai WL et al (2017) Binary halide, ternary perovskite-like, and perovskite-derivative nanostructures: hot injection synthesis and optical and photocatalytic properties. Nanoscale 9:3747–3751

    Article  CAS  Google Scholar 

  4. 4

    Amgar D, Binyamin T, Uvarov V et al (2018) Near ultra-violet to mid-visible band gap tuning of mixed cation RbxCs1−xPbX3 (X = Cl or Br) perovskite nanoparticles. Nanoscale 10:6060–6068

    Article  CAS  Google Scholar 

  5. 5

    Akkerman QA, D’Innocenzo V, Accornero S et al (2015) Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 137:10276–10281

    Article  CAS  Google Scholar 

  6. 6

    Li X, Cao F, Yu D et al (2017) All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13:1603996

    Article  CAS  Google Scholar 

  7. 7

    Song JZ, Li JH, Xu LM et al (2018) Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv Mater 30:1800764

    Article  CAS  Google Scholar 

  8. 8

    Li JH, Xu LM, Wang T et al (2017) 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater 29:1603885

    Article  CAS  Google Scholar 

  9. 9

    Song JZ, Xu LM, Li JH et al (2016) Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv Mater 28:4861

    Article  CAS  Google Scholar 

  10. 10

    Song JZ, Fang T, Li JH et al (2018) Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv Mater.

    Article  Google Scholar 

  11. 11

    Zhang X, Xu B, Zhang J et al (2016) All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: dual-phase CsPbBr3–CsPb2Br5 composites. Adv Funct Mater 26:4595–4600

    Article  CAS  Google Scholar 

  12. 12

    Liang J, Wang C, Wang Y et al (2016) All-inorganic perovskite solar cells. J Am Chem Soc 138:15829–15832

    Article  CAS  Google Scholar 

  13. 13

    Wang Y, Li X, Song J et al (2015) All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater 27:7101–7108

    Article  CAS  Google Scholar 

  14. 14

    Nedelcu G, Protesescu L, Yakunin S et al (2015) Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett 5:5635–5640

    Article  CAS  Google Scholar 

  15. 15

    Zhang D, Eaton SW, Yu Y et al (2015) Solution-phase synthesis of cesium lead halide perovskite nanowires. J Am Chem Soc 137:9230–9233

    Article  CAS  Google Scholar 

  16. 16

    Grätzel M (2014) The light and shade of perovskite solar cells. Nat Mater 13:838

    Article  CAS  Google Scholar 

  17. 17

    Rui M, Li X, Gan L et al (2016) Ternary oxide nanocrystals: universal laser-hydrothermal synthesis, optoelectronic and electrochemical applications. Adv Funct Mater 26:5051–5060

    Article  CAS  Google Scholar 

  18. 18

    Loiudice A, Saris S, Oveisi E et al (2017) CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew Chem Int Ed 56:10696–10701

    Article  CAS  Google Scholar 

  19. 19

    Hai J, Li H, Zhao Y et al (2017) Designing of blue, green, and red CsPbX3 perovskite-codoped flexible films with water resistant property and elimination of anion-exchange for tunable white light emission. Chem Commun 53:5400–5403

    Article  CAS  Google Scholar 

  20. 20

    Wang Y, Zhu Y, Huang J et al (2016) CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium. J Phys Chem Lett 7:4253–4258

    Article  CAS  Google Scholar 

  21. 21

    Pan A, Jurow MJ, Qiu F et al (2017) Nanorod suprastructures from a ternary graphene oxide–polymer–CsPbX3 perovskite nanocrystal composite that display high environmental stability. Nano Lett 17:6759–6765

    Article  CAS  Google Scholar 

  22. 22

    Liu X, Niu L, Wu C et al (2016) Periodic organic–inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv Sci 3:1600137

    Article  CAS  Google Scholar 

  23. 23

    Wang HC, Lin SY, Tang AC et al (2016) Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Ed 55:7924–7929

    Article  CAS  Google Scholar 

  24. 24

    Zhao X, Liu Y, Yu Y et al (2018) Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. Nanoscale 10:12595–12604

    Article  CAS  Google Scholar 

  25. 25

    Chao Y, Mak SY, Rahman S et al (2018) Generation of high-order all-aqueous emulsion drops by osmosis-driven phase separation. Small 14:1802107

    Article  CAS  Google Scholar 

  26. 26

    Liu Y, Jiang X (2017) Why microfluidics? Merits and trends in chemical synthesis. Lab Chip 17:3960–3978

    Article  CAS  Google Scholar 

  27. 27

    Chen LJ, Gong LL, Lin YL et al (2016) Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers. Lab Chip 16:1206–1213

    Article  CAS  Google Scholar 

  28. 28

    Feng Q, Sun J, Jiang X (2016) Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale 8:12430–12443

    Article  CAS  Google Scholar 

  29. 29

    Yan Q, Wei Z, Lin PC et al (2018) Polymer stabilized cholesteric liquid crystal particles with high thermal stability. Opt Mater Express 8:1536

    Article  CAS  Google Scholar 

  30. 30

    Mou CL, Wang W, Li ZL et al (2018) Trojan horse like stimuli-responsive microcapsules. Adv Sci 5:1700960

    Article  CAS  Google Scholar 

  31. 31

    Lin P, Yan Q, Wei Z et al (2018) Chiral photonic crystalline microcapsules with strict monodispersity, ultrahigh thermal stability, and reversible response. ACS Appl Mater Interfaces 10:18289–18299

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge the support of National Natural Science Foundation of China (No. 61805047), the Guangzhou Science Technology and Innovation Commission (No. 201807010108), Foshan Municipal Science and Technology Bureau project 2015IT100162 and the Innovative Project of College Students 201811845154, 201711845154 and xj201711845085.

Author information



Corresponding authors

Correspondence to Pengcheng Lin or Zhengdong Cheng.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2563 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Chen, Y., Lin, P. et al. Synthesis and encapsulation of all inorganic perovskite nanocrystals by microfluidics. J Mater Sci 54, 6841–6852 (2019).

Download citation