Skip to main content
Log in

Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, all-inorganic perovskite quantum dots (QDs) (CsPbX3, X = Cl, Br, I) as the emerging semiconductor materials have been intensively studied owing to superior optical properties. Currently, the strategy for preparation of inorganic perovskite QDs mainly focuses on the hot-injection method, but requires inert gas protection and is difficult to mass-produce. In this work, we developed a simple and low-cost strategy for preparing highly luminescent and air-stable all-inorganic perovskite QDs by directly heating perovskite precursors in octane in air. The emission wavelength of CsPbX3 perovskite QDs can be tunable from ultraviolet (UV) to infrared region by simply controlling their halide composition and display high PLQYs. Moreover, CsPbX3 perovskite QDs in octane can exist more than half a year in air and the film of CsPbX3 perovskite QDs also shows good thermal stability and air stability, especially high iodide-substituted CsPbBr3−xIx perovskite QDs. The CsPbX3 perovskite QDs can be easily blended with PDMS and used as color conversion layer on the blue LEDs chip for high-quality white LEDs. Our work opens a window for the potential application of such highly luminescent material in the fields of multicolor LEDs, backlight display and other related optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Schubert EF, Kim JK (2005) Solid-state light sources getting smart. Science 308:1274–1278

    Article  Google Scholar 

  2. Li GG, Tian Y, Zhao Y, Lin J (2015) Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem Soc Rev 44:8688–8713

    Article  Google Scholar 

  3. Pust P, Schmidt PJ, Schnick W (2015) A revolution in lighting. Nat Mater 14:454–458

    Article  Google Scholar 

  4. Potdevin A, Chadeyron G, Boyer D, Mahiou R (2006) Sol–gel elaboration and characterization of YAG: Tb3+ powdered phosphors. J Mater Sci 4:2201–2209. https://doi.org/10.1007/s10853-006-7182-7

    Article  Google Scholar 

  5. Huang XY (2014) Solid-state light red phosphor converts white LEDs. Nat Photonics 8:748–749

    Article  Google Scholar 

  6. Yang CC, Tsai HY, Huang KC (2013) Yellow-ring measurement of white LED in various lighting environments. Opt Rev 20:232–235

    Article  Google Scholar 

  7. Akkerman QA, D’Innocenzo V et al (2015) Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc 137:10276–10281

    Article  Google Scholar 

  8. Nedelcu G, Protesescu L et al (2015) Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett 15:5635–5640

    Article  Google Scholar 

  9. Protesescu L, Yakunin S et al (2015) Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15:3692–3696

    Article  Google Scholar 

  10. Sun SB, Yuan D et al (2016) Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10:3648–3657

    Article  Google Scholar 

  11. Li JH, Xu LM et al (2017) 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater 29:201603885-1–201603885-9. https://doi.org/10.1002/adma.201603885

    Google Scholar 

  12. Shi ZF, Li S et al (2018) Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano 12:1462–1472

    Article  Google Scholar 

  13. Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu YJ, Ohisa S, Kido J (2018) Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics 12:681–687

    Article  Google Scholar 

  14. Song JZ, Li JH, Xu LM, Li JH, Zhang FJ, Han BN, Shan QS, Zeng HB (2018) Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Adv Mater 30:1800764-1–1800764-7. https://doi.org/10.1002/adma.201800764

    Google Scholar 

  15. Yang Z, Wang MQ, Qiu HW, Yao X, Lao XZ, Xu SJ, Lin ZH, Sun LY, Shao JY (2018) Engineering the exciton dissociation in quantum-confined 2D CsPbBr 3 nanosheet films. Adv Funct Mater 28:1705908-1–1705908-10. https://doi.org/10.1002/adfm.201705908

    Google Scholar 

  16. Song JZ, Fang T, Li JH, Xu LM, Zhang FJ, Han BN, Shan QS, Zeng HB (2018) Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv Mater 30:1805409-1–1805409-9. https://doi.org/10.1002/adma.201805409

    Google Scholar 

  17. Pan AZ, Wang JL, Jurow MJ, Jia MJ, Liu Y, Wu YS, Zhang YF, He L, Liu Y (2018) General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 perovskite nanocrystals. Chem Mater 30:2771–2780

    Article  Google Scholar 

  18. Yakunin S, Protesescu L et al (2015) Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun 6:8056-1–8056-8. https://doi.org/10.1038/ncomms9056

    Google Scholar 

  19. Zhang Q, Yin YD (2018) All-inorganic metal halide perovskite nanocrystals: opportunities and challenges. ACS Central Sci 4:668–679

    Article  Google Scholar 

  20. Guo YL, Liu C, Tanaka H, Nakamura E (2015) Air-stable and solution-processable perovskite photodetectors for solar-blind UV and visible light. J Phys Chem Lett 6:535–539

    Article  Google Scholar 

  21. Roccanova R, Ming WM, Whiteside VR, Mcguire MA et al (2017) Synthesis, crystal and electronic structures, and optical properties of (CH3NH3)2CdX4 (X = Cl, Br, I). Inorg Chem 56:13878–13888

    Article  Google Scholar 

  22. Wang HC, Lin SY et al (2016) Mesoporous silica particles integrated with all-inorganic CsPbBr 3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew Chem Int Edit 55:7924–7929

    Article  Google Scholar 

  23. Sun C, Zhang Y et al (2016) Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater 28:10088–10094

    Article  Google Scholar 

  24. Wei Y, Xiao H et al (2018) Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv Opt Mater 6:1701343-1–1701343-8. https://doi.org/10.1002/adom.201701343

    Google Scholar 

  25. Zhang M, Wang M, Yang Z, Li J, Qiu H (2018) Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application. J Alloy Compd 748:537–545

    Article  Google Scholar 

  26. Ren JJ, Li TR, Zhou XP, Dong X, Shorokhov AV, Semenov MB, Krevchik VD, Wang YH (2019) Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chem Eng J 358:30–39

    Article  Google Scholar 

  27. Ren JJ, Dong X, Zhang GY, Li TR, Wang YH (2017) Air-stable and water-resistant all-inorganic perovskite quantum dot films for white-light-emitting applications. New J Chem 41:13961–13967

    Article  Google Scholar 

  28. Li XM, Wu Y et al (2016) CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct Mater 26:2435–2445

    Article  Google Scholar 

  29. Liu HW, Wu ZN et al (2017) One-step preparation of cesium lead halide CsPbX3 (X = CI, Br, and I) perovskite nanocrystals by microwave irradiation. ACS Appl Mater Interfaces 9:42919–42927

    Article  Google Scholar 

  30. Tong Y, Bladt E et al (2016) Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew Chem Int Edit 55:13887–13892

    Article  Google Scholar 

  31. Chen X, Peng LC et al (2016) Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res 9:1994–2006

    Article  Google Scholar 

  32. Kwon SG, Piao Y et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584

    Article  Google Scholar 

  33. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  Google Scholar 

  34. Charles Cao Y, Jianhui W (2004) One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J Am Chem Soc 126:14336–14337

    Article  Google Scholar 

  35. Zhong H, Lo SS et al (2010) Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 4:5253–5262

    Article  Google Scholar 

  36. Li D, Peng L, Zhang Z et al (2014) Large scale synthesis of air stable precursors for the preparation of high quality metal arsenide and phosphide nanocrystals as efficient emitters covering the visible to near infrared region. Chem Mater 26:3599–3602

    Article  Google Scholar 

  37. Chen X, Peng LC, Huang KK, Shi Z et al (2016) Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Res 9:1994–2006

    Article  Google Scholar 

  38. Song J, Li J, Li X, Xu L, Dong Y, Zeng H (2016) Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27:7162–7167

    Article  Google Scholar 

  39. Kim YH, Lee GH et al (2017) High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy 38:51–58

    Article  Google Scholar 

  40. Zhao ZF, Jing L et al (2018) Perovskite quantum dots as fluorescent materials for multi-colored lighting. J Mater Sci 53:15430–15441. https://doi.org/10.1007/s10853-018-2774-6

    Article  Google Scholar 

  41. Huang S, Li Z, Kong L, Zhu N, Shan A, Li L (2016) Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from TMOS in “waterless” toluene. J Am Chem Soc 138:5749–5752

    Article  Google Scholar 

  42. Zhenfu Z, Zhihai W, Jiong C, Liang J, Yafei H (2018) Nanocomposites of perovskite quantum dots embedded in magnesium silicate hollow spheres for multicolor display. J Phys Chem C 122:16887–16893

    Article  Google Scholar 

  43. Zhang F, Zhong H et al (2015) Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9:4533–4542

    Article  Google Scholar 

  44. Xing J, Yan F et al (2016) High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 10:6623–6630

    Article  Google Scholar 

  45. Zhang F, Shi ZF, Ma ZZ et al (2018) Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale 10:20131–20139

    Article  Google Scholar 

  46. O’Donnell KP, Chen X (1991) Temperature dependence of semiconductor band gaps. Appl Phys Lett 58:2924–2926

    Article  Google Scholar 

  47. Diroll BT, Zhou H et al (2018) Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv Funct Mater 28:1800945

    Article  Google Scholar 

  48. Jiang DS, Jung H, Ploog K (1988) Temperature dependence of photoluminescence from GaAs single and multiple quantum-well heterostructures grown by molecular-beam epitaxy. J Appl Phys 64:1371–1377. https://doi.org/10.1063/1.341862

    Article  Google Scholar 

  49. Rudin S, Reinecke TL (1995) Temperature dependent exciton linewidths in quantum wells. Phys Rev B 52:11517

    Article  Google Scholar 

  50. Dai N, Brown F, Doezema RE, Chung SJ, Santos MB (2001) Temperature dependence of exciton linewidths in InSb quantum wells. Phys Rev B 63:115321-1–115321-6. https://doi.org/10.1103/PhysRevB.63.115321

    Google Scholar 

  51. Levchuk I, Osvet A et al (2017) Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett 17:2765–2770

    Article  Google Scholar 

  52. Eunjoo J, Shinae J et al (2010) White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater 22:3076–3080

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation of China (Grant No. 11704206) and Research Fund Project of Ningbo University (Grant No. XYL18019) and also sponsored by K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhenfu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhihai, W., Jiao, W., Yanni, S. et al. Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs. J Mater Sci 54, 6917–6929 (2019). https://doi.org/10.1007/s10853-019-03382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03382-2

Navigation