Skip to main content
Log in

Nanoscale integration of oxides and metals in bulk 3D composites: leveraging SrFe12O19/Co interfaces for magnetic exchange coupling

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The integration of different material classes (e.g, oxides and metals) with nanoscale dimensions in large 3D materials remains a fundamental challenge in nanocomposite fabrication. The incentive is that some of the most interesting properties occur at nanoscale interfaces, while the challenge arises from the difficulty in densifying the materials without deleterious reaction at the interface. Here, we introduce a method based on the synthesis of core–shell powders followed by efficient, relatively low-temperature densification with current-activated pressure-assisted densification. The composition of the bulk nanocomposites can be controlled by varying the core–shell weight ratio, leading to controllable thicknesses of the hard/soft magnetic phases. We demonstrate intimate mixtures of nanoscale strontium ferrite (hard magnetic phase) and Co–Fe (soft magnetic phase) with minimal reaction. The high volume content of high-quality oxide/metal interfaces leads to magnetic exchange coupling in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Hellman F et al (2017) Interface-induced phenomena in magnetism. Rev Mod Phys 89:025006

    Article  Google Scholar 

  2. Miyazaki T, Tezuka N (1995) Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J Magn Magn Mater 139:L231–L234

    Article  Google Scholar 

  3. Tang C, Sellappan P, Liu Y, Xu Y, Garay JE, Shi J (2016) Anomalous hall hysteresis in Tm3Fe5O12/Pt with strain-induced perpendicular magnetic anisotropy. Phys Rev B Rapid Commun 94:140403(R)

    Article  Google Scholar 

  4. Leite GCP, Chagas EF, Pereira R, Prado RJ, Terezo AJ, Alzamora M, Baggio-Saitovitch E (2012) Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J Magn Magn Mater 324:2711–2716

    Article  Google Scholar 

  5. Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle by self-assembly. Nature 420:395–398

    Article  Google Scholar 

  6. Volodchenkov AD, Kodera Y, Garay JE (2016) Synthesis of strontium ferrite/iron oxide exchange coupled nano-powders with improved energy product for rare earth free permanent magnet applications. J Mater Chem C 4:5593–5601

    Article  Google Scholar 

  7. Zhang Y, Yan B, Ou-Yang J, Zhu B, Chen S, Yang X, Liu Y, Xiong R (2015) Magnetic properties of core/shell-structured CoFe2/CoFe2O4 composite nano-powders synthesized via oxidation reaction. Ceram Int 41:11836–11843

    Article  Google Scholar 

  8. Fullerton Eric E, Jiang JS, Grimsditch M, Sowers CH, Bader SD (1998) Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Phys Rev B 58:12193

    Article  Google Scholar 

  9. Garay JE (2010) Current activated pressure assisted densification of materials. Annu Rev Mater Res 40:445–468

    Article  Google Scholar 

  10. Morales JR, Tanju S, Beyermann WP, Garay JE (2010) Exchange bias in large three dimensional iron oxide nanocomposites. Appl Phys Lett 96:013102

    Article  Google Scholar 

  11. Zhang Y, Xiong R, Yang Z, Yu W, Zhu B, Chen S, Yang X (2013) Enhancement of interparticle exchange coupling in cofe2o4/cofe2 composite nanoceramics via spark plasma sintering technology. J Am Ceram Soc 96(12):3798–3804

    Article  Google Scholar 

  12. Nawathey-Dikshit R, Shinde SR, Ogale SB, Kulkarni SD, Sainkar SR, Date SK (1996) Synthesis of single domain strontium ferrite powder by pulsed laser ablation. Appl Phys Lett 68(24):3491

    Article  Google Scholar 

  13. Liu Z, Davies H (2009) J Phys D: Appl Phys, vol. 42

  14. Shinde S R, Lofland S E, Ganpule C S, Ogale S B, Bhagat S M, Venkatesan T, and Ramesh R J (1999) Appl Phys 85(10): 7459

  15. Pullar RC (2012) Prog Mater Sci 57(7):1191–1334

    Article  Google Scholar 

  16. Willard HH, Tang NK (1937) A study of the precipitation of aluminum basic sulfate by urea. J Am Chem Soc 1937(59):1190–1196

    Article  Google Scholar 

  17. Djuričić B, Pickering S, McGarry D, Glaude P, Tambuyser P, Schuster K (1995) The properties of zirconia powders produced by homogeneous precipitation. Ceram Int 21(3):195–206

    Article  Google Scholar 

  18. Unuma H, Kato S, Ota T, Takahashi M (1998) Homogeneous precipitation of alumina precursors via enzymatic decomposition of urea. Adv Powder Technol 9(2):181–190

    Article  Google Scholar 

  19. Matijevic E (1993) Preparation and properties of uniform size colloids. Chem Mater 5(4):412–426

    Article  Google Scholar 

  20. Parida K, Das J (1996) Studies on ferric oxide hydroxides: II. Structural properties of goethite samples (α-FeOOH) prepared by homogeneous precipitation from Fe(NO3)3solution in the presence of sulfate ions. J Colloid Interface Sci 178(2):586–593

    Article  Google Scholar 

  21. Anselmi-Tamburini U, Garay JE, Munir ZA (2006) Fast low-temperature consolidation of nanometric ceramic materials. Scr Mater 54:823–828

    Article  Google Scholar 

  22. Pike CR (2003) First-order reversal-curve diagrams and reversible magnetization. Phys Rev B 68(10):104424

    Article  Google Scholar 

  23. Harrison R J and Feinberg J M (2008) “FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing,” Geochemistry, Geophys. Geosystems 9(5)

  24. Jiang Y, Wu Y, Xie B, Xie Y, Qian Y (2002) Moderate temperature synthesis of nanocrystalline Co 3 O 4 via gel hydrothermal oxidation. Mater Chem Phys 74:234–237

    Article  Google Scholar 

  25. Yang H, Hu Y, Zhang X, Qiu G (2004) Mechanochemical synthesis of cobalt oxide nanoparticles. Mater Lett 58(3–4):387–389

    Article  Google Scholar 

  26. Fullerton EE, Jiang J, Bader S (1999) Hard/soft magnetic heterostructures: model exchange-spring magnets. J Magn Magn Mater 200(1–3):392–404

    Article  Google Scholar 

  27. Nishizawa T, Ishida K (1984) The Co–Fe (cobalt–iron) system. Bull Alloy Phase Diagr 5(3):250–259

    Article  Google Scholar 

  28. Pike CR, Roberts AP, Verosub KL (1999) Characterizing interactions in fine magnetic particle systems using first order reversal curves. J Appl Phys 85(9):6660

    Article  Google Scholar 

  29. Roy D, Anil Kumar PS (2015) Exchange spring behaviour in SrFe12O19–CoFe2O4 nanocomposites. AIP Adv 5(7):077137

    Article  Google Scholar 

  30. Mayergoyz ID (2003) Mathematical models of hysteresis and their applications. Second Elsevier, New York

    Google Scholar 

  31. Volodchenkov AD, Ramirez S, Samnakay R, Salgado R, Kodera Y, Balandin AA, Garay JE (2017) Magnetic and thermal transport properties of SrFe12O19 permanent magnets with anisotropic grain structure. Mater Des 125(5):62–68

    Article  Google Scholar 

  32. Chan KT, Morales JR, Kodera Y, Garay JE (2017) A processing route for bulk, high coercivity, rare-earth free, nanocomposite magnets based on metastable iron oxide. J Mater Chem C 5:7911

    Article  Google Scholar 

Download references

Acknowledgements

The support of this work from the Office of Naval Research with Dr H. S. Coombe as program manager is most gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Kodera or J. E. Garay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodchenkov, A.D., Kodera, Y. & Garay, J.E. Nanoscale integration of oxides and metals in bulk 3D composites: leveraging SrFe12O19/Co interfaces for magnetic exchange coupling. J Mater Sci 54, 8276–8288 (2019). https://doi.org/10.1007/s10853-019-03323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03323-z

Navigation