Skip to main content
Log in

Fabrication of superrepellent microstructured polypropylene/graphene surfaces with enhanced wear resistance

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fabrication of biomimetic laminated polypropylene/graphene powder (PP/GP) nanocomposites by template method to form the highly structured micropillars with submicron villi on top is presented in this work. Microstructures on PP surfaces are stretched and warped by the considerable force between the PP material and microcavities in the template during demolding, changing from micropillars to micropyramids. With the addition of 9% GP, the surface adhesive force is reduced from ~ 571 to ~ 215 μN on smooth surfaces and is almost as weak as ~ 4 μN on microstructured PP/GP surfaces, contributing to the successful demolding of microstructures from microcavities. The droplet of less than 10 μL would rather adhere to the syringe needle than the microstructured PP/GP surface. Apparently, the microstructured PP/GP surface with an extremely small roll-off angle of ~ 0.5° is slippery and superhydrophobic, exhibiting lotus effect. With the ability to work under a water pressure of up to 1500 Pa, the microstructured PP/GP surface exhibits a high-efficiency self-cleaning performance by a combination of droplet bouncing and rolling behaviors. The submicron villi forming on the top of PP/GP micropillars are caused by a mild stretch. This phenomenon might be attributed to a weak adhesion between PP/GP nanocomposites and the microcavities during demolding, facilitating the formation of the sufficiently robust Cassie–Baxter state. After a 1000 mm abrasion length, the newly formed tapering microfibers increase the roughness on the top of the micropillars and help the worn microstructured surface transform to the sticky superhydrophobicity, i.e., petal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Cao MY, Guo DW, Yu CM, Li K, Liu MJ, Jiang L (2016) Water-repellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: a brief study on the functions and applications. ACS Appl Mater Interfaces 8:3615–3623

    Article  Google Scholar 

  2. Motlagh NV, Khani R, Rahnama S (2015) Super dewetting surfaces: focusing on their design and fabrication methods. Colloids Surf A Physicochem Eng Asp 484:528–546

    Article  Google Scholar 

  3. Zhou BP, Gao YB, Mao YY, Wen WJ (2017) Facile preparation of superhydrophobic PDMS with patternable and controllable water adhesion characteristics. J Mater Sci 52(19):11428–11441. https://doi.org/10.1007/s10853-017-1317-x

    Article  Google Scholar 

  4. Green JJ, Elisseeff JH (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540(7633):386–394

    Article  Google Scholar 

  5. Liu MJ, Wang ST, Jiang L (2017) Nature-inspired superwettability systems. Nat Rev Mater 2(7):17036. https://doi.org/10.1038/natrevmats.2017.36

    Article  Google Scholar 

  6. Zhang P, Lv FY (2015) A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82:1068–1087

    Article  Google Scholar 

  7. Matziaris K, Panayiotou C (2014) Tunable wettability on Pendelic marble: could an inorganic marble surface behave as a “self-cleaning” biological surface? J Mater Sci 49(5):1931–1946. https://doi.org/10.1007/s10853-013-7902-8

    Article  Google Scholar 

  8. Ventre M, Netti PA (2016) Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning. ACS Appl Mater Interfaces 8(24):14896–14908

    Article  Google Scholar 

  9. Latthe SS, Sudhagar P, Devadoss A, Kumar AM, Liu SH, Terashima C, Nakata K, Fujishima AA (2015) Mechanically bendable superhydrophobic steel surface with self-cleaning and corrosion-resistant properties. J Mater Chem A 3(27):14263–14271

    Article  Google Scholar 

  10. Zhu L, Shi P, Xue J, Wang YY, Chen QM, Ding JF, Wang QJ (2014) Superhydrophobic stability of nanotube array surfaces under impact and static forces. ACS Appl Mater Interfaces 6(11):8073–8079

    Article  Google Scholar 

  11. Zhu W, Liu HT, Yan W, Chen TC (2017) The fabrication of superhydrophobic PTFE/UHMWPE composite surface by hot-pressing and texturing process. Colloids Polym Sci 295(5):759–766

    Article  Google Scholar 

  12. Korpela T, Suvanto M, Pakkanen TT (2015) Wear and friction behavior of polyacetal surfaces with micro-structure controlled surface pressure. Wear 328:262–269

    Article  Google Scholar 

  13. Kim M, Lee SM, Lee SJ, Kim YW, Liang L, Lee DW (2017) Effect on friction reduction of micro/nano hierarchical patterns on sapphire wafers. Int J Precis Eng Manuf Green Technol 4(1):27–35

    Article  Google Scholar 

  14. Contraires E, Teisseire J, Sondergard E, Barthel E (2016) Wetting against the nap-how asperity inclination determines unidirectional spreading. Soft Matter 12(28):6067–6072

    Article  Google Scholar 

  15. Tricinci O, Terencio T, Mazzolai B, Pugno NM, Greco F, Mattoli V (2015) 3D micropatterned surface inspired by Salvinia molesta via direct laser lithography. ACS Appl Mater Interfaces 7(46):25560–25567

    Article  Google Scholar 

  16. Hoppe C, Mitschker F, Awakowicz P, Kirchheim D, Dahlmann R, de los Arcos T, Grundmeier G (2018) Adhesion of plasma-deposited silicon oxide barrier layers on PDMS containing polypropylene. Surf Coat Tech 335:25–31

    Article  Google Scholar 

  17. Zhang XG, Liu ZJ, Zhang XY, Li Y, Wang HY, Wang JT, Zhu YJ (2018) High-adhesive superhydrophobic litchi-like coatings fabricated by in situ growth of nano-silica on polyethersulfone surface. Chem Eng J 343:699–707

    Article  Google Scholar 

  18. Bormashenko E, Grynyov R, Chaniel G, Taitelbaum H, Bormashenko Y (2013) Robust technique allowing manufacturing superoleophobic surfaces. Appl Surf Sci 270:98–103

    Article  Google Scholar 

  19. Chen AF, Huang HX (2016) Rapid fabrication of t-shaped micropillars on polypropylene surfaces with robust Cassie–Baxter state for quantitative droplet collection. J Phys Chem C 120(3):1556–1561

    Article  Google Scholar 

  20. Chen AF, Huang HX (2016) Rapid transfer of hierarchical microstructures onto biomimetic polymer surfaces with gradually tunable water adhesion from slippery to sticky superhydrophobicity. Mater Res Express 3(2):025011. https://doi.org/10.1088/2053-1591/3/2/025011

    Article  Google Scholar 

  21. Toosi SF, Moradi S, Ebrahimi M, Hatzikiriakos SG (2016) Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Appl Surf Sci 378:426–434

    Article  Google Scholar 

  22. Moore S, Gomez J, Lek D, You BH, Kim N, Song IH (2016) Experimental study of polymer microlens fabrication using partial-filling hot embossing technique. Microelectron Eng 162:57–62

    Article  Google Scholar 

  23. Zhao LY, Zhao J, Liu YY, Guo YF, Zhang LP, Chen Z, Zhang H, Zhang Z (2016) Continuously tunable wettability by using surface patterned shape memory polymers with giant deformability. Small 12(24):3327–3333

    Article  Google Scholar 

  24. Schauer S, Meier T, Reinhard M, Rohrig M, Schneider M, Heilig M, Kolew A, Worgull M, Holscher H (2016) Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing. ACS Appl Mater Interfaces 8(14):9423–9430

    Article  Google Scholar 

  25. Saarikoski I, Joki-Korpela F, Suvanto M, Pakkanen TT, Pakkanen TA (2012) Superhydrophobic elastomer surfaces with nanostructured micronails. Surf Sci 606(1–2):91–98

    Article  Google Scholar 

  26. Xu QF, Mondal F, Lyons AM (2011) Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method. ACS Appl Mater Interfaces 3(9):3508–3514

    Article  Google Scholar 

  27. Lu Z, Zhang KF (2009) Morphology and mechanical properties of polypropylene micro-arrays by micro-injection molding. Int J Adv Manuf Technol 40(5–6):490–496

    Article  Google Scholar 

  28. Kavalenka MN, Vuellers F, Kumberg J et al (2017) Adaptable bioinspired special wetting surface for multifunctional oil/water separation. Sci Rep 7:39970. https://doi.org/10.1038/srep39970

    Article  Google Scholar 

  29. Stormonth-Darling JM, Gadegaard N (2012) Injection moulding difficult nanopatterns with hybrid polymer inlays. Macromol Mater Eng 297(11):1075–1080

    Article  Google Scholar 

  30. Stormonth-Darling JM, Pedersen RH, How C, Gadegaard N (2014) Injection moulding of ultra high aspect ratio nanostructures using coated polymer tooling. J Micromech Microeng 24(7):075019. https://doi.org/10.1088/0960-1317/24/7/075019

    Article  Google Scholar 

  31. Matschuk M, Larsen NB (2013) Injection molding of high aspect ratio sub-100 nm nanostructures. J Micromech Microeng 23(2):025003. https://doi.org/10.1088/0960-1317/23/2/025003

    Article  Google Scholar 

  32. Li ZY, Yang WJ, Wu YP, Wu SB, Cai ZB (2017) Role of humidity in reducing the friction of graphene layers on textured surfaces. Appl Surf Sci 403:362–370

    Article  Google Scholar 

  33. Chih A, Anson-Casaos A, Puertolas JA (2017) Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol Int 116:295–302

    Article  Google Scholar 

  34. Tripathi SN, Rao GSS, Mathur AB, Jasra R (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7(38):23615–23632

    Article  Google Scholar 

  35. Quiles-Diaz S, Enrique-Jimenez P, Papageorgiou DG, Ania F, Flores A, Kinloch IA, Gomez-Fatou MA, Young RJ, Salavagione HJ (2017) Influence of the chemical functionalization of graphene on the properties of polypropylene-based nanocomposites. Compos Part A Appl S 100:31–39

    Article  Google Scholar 

  36. Lv LL, Huang L, Zhu PL, Li G, Zhao T, Long JP, Sun R, Wong CP (2017) SiO2 particle-supported ultrathin graphene hybrids/polyvinylidene fluoride composites with excellent dielectric performance and energy storage density. J Mater Sci Mater Electron 28(18):13521–13531

    Article  Google Scholar 

  37. Liu L, Yan F, Gai FY, Xiao LH, Shang L, Li M, Ao YH (2017) Enhanced tribological performance of PEEK/SCF/PTFE hybrid composites by graphene. RSC Adv 7(53):33450–33458

    Article  Google Scholar 

  38. Kelnar I, Kratochvil J, Kapralkova L, Zhigunov A, Nevoralova M (2017) Graphite nanoplatelets-modified PLA/PCL: effect of blend ratio and nanofiller localization on structure and properties. J Mech Behav Biomed Mater 71:271–278

    Article  Google Scholar 

  39. He SH, Zhang JJ, Xiao XT, Hong XM, Lai YJ (2017) Investigation of the conductive network formation of polypropylene/graphene nanoplatelets composites for different platelet sizes. J Mater Sci 52(22):13103–13119. https://doi.org/10.1007/s10853-017-1413-y

    Article  Google Scholar 

  40. Bafana AP, Yan XR, Wei X, Patel M, Guo ZH, Wei SY, Wujcik EK (2017) Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets. Compos Part B Eng 109:101–107

    Article  Google Scholar 

  41. Ahmad SR, Xue CZ, Young RJ (2017) The mechanisms of reinforcement of polypropylene by graphene nanoplatelets. Mater Sci Eng B 216:2–9

    Article  Google Scholar 

  42. Li R, Chen CB, Li J, Xu LM, Xiao GY, Yan DY (2014) A facile approach to superhydrophobic and superoleophilic graphene/polymer aerogels. J Mater Chem A 2(9):3057–3064

    Article  Google Scholar 

  43. Nine MJ, Cole MA, Johnson L, Tran DNH, Losic D (2015) Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Appl Mater Interfaces 7(51):28482–28493

    Article  Google Scholar 

  44. Bong J, Seo K, Park JH, Ahn JR, Ju S (2014) Wettability of graphene-laminated micropillar structures. J Appl Phys 116(23):234303. https://doi.org/10.1063/1.4904353

    Article  Google Scholar 

  45. Goyal RK, Yadav M (2014) The wear and friction behavior of novel polytetrafluoroethylene/expanded graphite nanocomposites for tribology application. J Tribol Trans ASME 136(2):021601. https://doi.org/10.1115/1.4025655

    Article  Google Scholar 

  46. Zeng XZ, Peng YT, Lang HJ (2017) A novel approach to decrease friction of graphene. Carbon 118:233–240

    Article  Google Scholar 

  47. Wu P, Li XM, Zhang CH, Chen XC, Lin SY, Sun HY, Lin CT, Zhu HW, Luo JB (2017) Self-assembled graphene film as low friction solid lubricant in macroscale contact. ACS Appl Mater Interfaces 9(25):21554–21562

    Article  Google Scholar 

  48. Smolyanitsky A, Killgore JP, Tewary VK (2012) Effect of elastic deformation on frictional properties of few-layer graphene. Phys Rev B 85(3):35412. https://doi.org/10.1103/PhysRevB.85.035412

    Article  Google Scholar 

  49. Wang N, Xiong DS, Deng YL, Shi Y, Wang K (2015) Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl Mater Interfaces 7(11):6260–6272

    Article  Google Scholar 

  50. Yildirim A, Khudiyev T, Daglar B, Budunoglu H, Okyay AK, Bayindir M (2013) Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids. ACS Appl Mater Interfaces 5(3):853–860

    Article  Google Scholar 

  51. Yin LT, Yang J, Tang YC, Chen L, Liu C, Tang H, Li CS (2014) Mechanical durability of superhydrophobic and oleophobic copper meshes. Appl Surf Sci 316:259–263

    Article  Google Scholar 

  52. Inuwa IM, Hassan A, Wang DY, Samsudin SA, Haafiz MKM, Wong SL, Jawaid M (2014) Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stabil 110:137–148

    Article  Google Scholar 

  53. Liu W, Fukushima H, Drzal LT (2010) Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett 11(4):279–284

    Article  Google Scholar 

  54. Brown PS, Bhushan B (2016) Durable superoleophobic polypropylene surfaces. Philos Trans R Soc A Math Phys Eng Sci 374:2073. https://doi.org/10.1098/rsta.2016.0193

    Google Scholar 

  55. Long JY, Fan PX, Gong DW, Jiang DF, Zhang HJ, Li L, Zhong ML (2015) Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal. ACS Appl Mater Interfaces 7(18):9858–9865

    Article  Google Scholar 

  56. Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2(7):457–460

    Article  Google Scholar 

  57. Bhushan B, Jung YC, Koch K (2009) Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25(5):3240–3248

    Article  Google Scholar 

Download references

Acknowledgements

Financial support provided by Supported by Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (contract Grant Number: 2016KQNCX043), Guangdong Province YangFan Innovative Entrepreneurial Research Team Project (contract Grant Number: 201312G02), and the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anfu Chen or Zhengrong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Ding, S., Huang, J. et al. Fabrication of superrepellent microstructured polypropylene/graphene surfaces with enhanced wear resistance. J Mater Sci 54, 3914–3926 (2019). https://doi.org/10.1007/s10853-018-3138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3138-y

Keywords

Navigation