Skip to main content
Log in

Characterization of grain boundary disconnections in SrTiO3 part I: the dislocation component of grain boundary disconnections

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-resolution transmission electron microscopy is often used to characterize grain boundaries, but it is usually limited to special high symmetry boundaries with a high density of coincident sites. For these ‘special’ boundaries, both crystals can be brought into a low-index zone-axis with the boundary plane parallel to the incident electron beam. In this case the atomistic structure of the boundary can be solved, which is not possible for other, more general grain boundaries. In the present study, general grain boundaries in SrTiO3 were analyzed using aberration-corrected transmission electron microscopy and scanning transmission electron microscopy. These boundaries included at least one type of disconnection (i.e., defects that can have a step and/or a dislocation component). Since the dislocation component of disconnections along general grain boundaries cannot be fully resolved using the methods currently available, a plane matching approach was used to compare disconnections at different boundaries. Using this approach, the dislocation component of the disconnections was partially characterized and was found to have an edge component mainly parallel to {100} and {110}, close to normal to the macroscopic grain boundary plane. The step component of the disconnections was found to be aligned mainly parallel to the same crystallographic planes ({100} and {110}).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Reference

  1. Gleiter H (1969) Mechanism of grain boundary migration. Acta Metall 17:565. https://doi.org/10.1016/0001-6160(69)90115-1

    Article  Google Scholar 

  2. Gleiter H (1969) Theory of grain boundary migration rate. Acta Metall 17:853. https://doi.org/10.1016/0001-6160(69)90105-9

    Article  Google Scholar 

  3. Pond RC, Hirth JP (1994) Defects at surfaces and interfaces. Sol State Phy 47:287–365. https://doi.org/10.1016/S0081-1947(08)60641-4

    Article  Google Scholar 

  4. Khater HA, Serra A, Pond RC, Hirth JP (2012) The disconnection mechanism of coupled migration and shear at grain boundaries. Acta Mater 60:2007. https://doi.org/10.1016/j.actamat.2012.01.001

    Article  Google Scholar 

  5. Hirth JP, Pond RC (1996) Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater 44:4749. https://doi.org/10.1016/S1359-6454(96)00132-2

    Article  Google Scholar 

  6. Pond RC, Ma X, Hirth JP, Mitchell TE (2007) Disconnections in simple and complex structures. Philos Mag 87:5289. https://doi.org/10.1080/14786430701651721

    Article  Google Scholar 

  7. Howe JM, Pond RC, Hirth JP (2009) The role of disconnections in phase transformations. Prog Mater Sci 54:792. https://doi.org/10.1016/j.pmatsci.2009.04.001

    Article  Google Scholar 

  8. Pond RC, Shang P, Cheng TT, Aindow M (2000) Interfacial dislocation mechanism for diffusional phase transformations exhibiting martensitic crystallography: formation of TiAl + Ti3Al lamellae. Acta Mater 48:1047. https://doi.org/10.1016/S1359-6454(99)00416-4

    Article  Google Scholar 

  9. Pond R, Ma X, Chai Y, Hirth J (2007) Topological modelling of martensitic transformations. Dislocat Solids 13:225

    Article  Google Scholar 

  10. Hirth JP (1994) Dislocations, steps and disconnections at interfaces. J Phys Chem Solids 55:985. https://doi.org/10.1016/0022-3697(94)90118-X

    Article  Google Scholar 

  11. Han J, Thomas SL, Srolovitz DJ (2018) Grain-boundary kinetics: a unified approach. Prog Mater Sci 98:386. https://doi.org/10.1016/j.pmatsci.2018.05.004

    Article  Google Scholar 

  12. Sternlicht H, Rheinheimer W, Hoffmann MJ, Kaplan WD (2016) The mechanism of grain boundary motion in SrTiO3. J Mater Sci 51:467. https://doi.org/10.1007/s10853-015-9058-1

    Article  Google Scholar 

  13. Balluffi RW, Brokman A, King AH (1982) CSL/DSC lattice model for general crystalcrystal boundaries and their line defects. Acta Metall 30:1453. https://doi.org/10.1016/0001-6160(82)90166-3

    Article  Google Scholar 

  14. Howe JM (1997) Interfaces in materials: atomic structure, kinetics and thermodynamics of solid–vapor, solid–liquid and solid–solid interfaces. Wiley, New York

    Google Scholar 

  15. Rheinheimer W, Hoffmann MJ (2015) Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries. Scr Mater 101:68. https://doi.org/10.1016/j.scriptamat.2015.01.021

    Article  Google Scholar 

  16. Rheinheimer W, Bäurer M, Handwerker CA, Blendell JE, Hoffmann MJ (2015) Growth of single crystalline seeds into polycrystalline strontium titanate: anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries. Acta Mater 95:111. https://doi.org/10.1016/j.actamat.2015.05.019

    Article  Google Scholar 

  17. Baurer M, Kungl H, Hoffmann MJ (2009) Influence of Sr/Ti Stoichiometry on the densification behavior of strontium titanate. J Am Ceram Soc 92:601. https://doi.org/10.1111/j.1551-2916.2008.02920.x

    Article  Google Scholar 

  18. Barthel J, Houben L, and Tillmann K (2015) FEI Titan G3 50-300 PICO. J Large-Scale Res Facil, A34 1. https://doi.org/10.17815/jlsrf-1-57

  19. Baram M, Kaplan WD (2008) Quantitative HRTEM analysis of FIB prepared specimens. J Microsc 232:395. https://doi.org/10.1111/j.1365-2818.2008.02134.x

    Article  Google Scholar 

  20. http://qstem.org/ (2017)

  21. Bishop CM, Cannon RM, Carter WC (2005) A diffuse interface model of interfaces: grain boundaries in silicon nitride. Acta Mater 53:4755. https://doi.org/10.1016/j.actamat.2005.07.008

    Article  Google Scholar 

  22. Yu Z, Muller DA, Silcox J (2004) Study of strain fields at a-Si/c-Si interface. J Appl Phys 95:3362. https://doi.org/10.1063/1.1649463

    Article  Google Scholar 

  23. Huang K (1947) X-Ray reflexions from dilute solid solutions. Proc R Soc Ser A Math Phys Sci 190:102. https://doi.org/10.1098/rspa.1947.0064

    Google Scholar 

  24. Wang ZL (1995) Elastic and inelastic scattering in electron diffraction and imaging. Plenum Press, New York

    Book  Google Scholar 

  25. Klie RF, Browning ND (2000) Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. Appl Phys Lett 77:3737. https://doi.org/10.1063/1.1330572

    Article  Google Scholar 

  26. Browning ND, Pennycook SJ, Chisholm MF, McGibbon MM, McGibbon AJ (1995) Observation of structural units at symmetric [001] tilt boundaries in SrTiO3. Interface Sci 2:397. https://doi.org/10.1007/BF00222626

    Article  Google Scholar 

  27. Browning ND, Buban JP, Moltaji HO, Pennycook SJ, Duscher G, Johnson KD, Rodrigues RP, Dravid VP (1999) The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3. Appl Phys Lett 74:2638. https://doi.org/10.1063/1.123922

    Article  Google Scholar 

  28. Kim M, Duscher G, Browning ND, Sohlberg K, Pantelides ST, Pennycook SJ (2001) Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3. Phys Rev Lett 86:4056

    Article  Google Scholar 

  29. Sternlicht H, Rheinheimer W, Kim J, Liberti E, Kirkland AI, Hoffmann MJ, and Kaplan WD, Characterization of grain boundary disconnections in SrTiO3 part II: The influence of superimposed disconnections in image analysis. J Mater Sci. https://doi.org/10.1007/s10853-018-3095-5

    Google Scholar 

  30. Du H, Jia C-L, Houben L, Metlenko V, De Souza RA, Waser R, Mayer J (2015) Atomic structure and chemistry of dislocation cores at low-angle tilt grain boundary in SrTiO3 bicrystals. Acta Mater 89:344. https://doi.org/10.1016/j.actamat.2015.02.016

    Article  Google Scholar 

  31. Nishigaki J, Kuroda K, Saka H (1991) Electron microscopy of dislocation structures in SrTiO3 deformed at high temperatures. Phys Status Solidi (a) 128:319. https://doi.org/10.1002/pssa.2211280207

    Article  Google Scholar 

  32. Matsunaga T, Saka H (2000) Transmission electron microscopy of dislocations in SrTiO3. Philos Mag Lett 80:597. https://doi.org/10.1080/09500830050134309

    Article  Google Scholar 

  33. Narayan J, Sharan S, Singh RK, Jagannadham K (1989) Misfit dislocations in superconducting thin films on SrTiO3{010}. Mater Sci Eng B 2:333. https://doi.org/10.1016/0921-5107(89)90009-3

    Article  Google Scholar 

  34. Jia C-L, Lentzen M, Urban K (2004) High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10:174. https://doi.org/10.1017/S1431927604040425

    Article  Google Scholar 

  35. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, Oxford

    Google Scholar 

  36. Howe JM, Aaronson HI, Hirth JP (2000) Aspects of interphase boundary structure in diffusional phase transformations. Acta Mater 48:3977. https://doi.org/10.1016/S1359-6454(00)00183-X

    Article  Google Scholar 

  37. Rheinheimer W, Bäurer M, Chien H, Rohrer GS, Handwerker CA, Blendell JE, Hoffmann MJ (2015) The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Mater 82:32. https://doi.org/10.1016/j.actamat.2014.08.065

    Article  Google Scholar 

  38. Saylor DM, El Dasher B, Sano T, Rohrer GS (2004) Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670. https://doi.org/10.1111/j.1551-2916.2004.00670.x

    Article  Google Scholar 

  39. Sano T, Saylor DM, Rohrer GS (2003) Surface energy anisotropy of SrTiO3 at 1400 °C in air. J Am Ceram Soc 86(11):1933–1939

    Article  Google Scholar 

  40. Furushima Y, Arakawa Y, Nakamura A, Tochigi E, Matsunaga K (2017) Nonstoichiometric [012] dislocation in strontium titanate. Acta Mater 135:103. https://doi.org/10.1016/j.actamat.2017.06.017

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Lothar Houben for assistance with acquiring the data set presented in Figs. 1 and 2 in this manuscript and Fig. S1 and S2 in the supplementary material, and for detailed discussions. The authors thank D. Medlin for his comments on the manuscript and extended discussions. This work was partially supported via a German-Israel Fund (GIF) Grant No. I-1276-401.10/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne D. Kaplan.

Additional information

Hadas Sternlicht: Conducted when the author was at Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa Israel.

Wolfgang Rheinheimer: Conducted when the author was at Institute of Applied Materials, Karlsruhe Institute of Technology, Karlsruhe, Germany.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sternlicht, H., Rheinheimer, W., Dunin-Borkowski, R.E. et al. Characterization of grain boundary disconnections in SrTiO3 part I: the dislocation component of grain boundary disconnections. J Mater Sci 54, 3694–3709 (2019). https://doi.org/10.1007/s10853-018-3096-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3096-4

Keywords

Navigation