Skip to main content
Log in

Characterization of grain boundary disconnections in SrTiO3 Part II: the influence of superimposed disconnections on image analysis

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Disconnections were recently shown to play a role in the mechanism of grain boundary motion in general grain boundaries in SrTiO3. In this work, we demonstrate the existence of disconnections in the viewing direction along the projected thickness of transmission electron microscopy samples and characterize possible aspects of the structure of these disconnections. We show that the presence of steps along the viewing direction may result in the appearance of a disordered region at the boundary, while it is actually composed of ordered crystalline material. We discuss the subsequent complications in analysis of transmission electron microscopy data and strict meaning of the term “edge-on” for grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) High-resolution imaging with an aberration-corrected transmission electron microscope. Ultramicroscopy 92:233–242. https://doi.org/10.1016/s0304-3991(02)00139-0

    Article  Google Scholar 

  2. Urban KW (2008) Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321:506–510. https://doi.org/10.1126/science.1152800

    Article  Google Scholar 

  3. Tillmann K, Houben L, Thust A, Urban K (2006) Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: synergetic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution. J Mater Sci 41:4420–4433. https://doi.org/10.1007/s10853-006-0154-0

    Article  Google Scholar 

  4. Houben L (2006) Aberration-corrected HRTEM of defects in strained La2CuO4 thin films grown on SrTiO3. J Mater Sci 41:4413–4419. https://doi.org/10.1007/s10853-006-0151-3

    Article  Google Scholar 

  5. Kirkland AI, Meyer RR (2004) “Indirect” high-resolution transmission electron microscopy: aberration measurement and wavefunction reconstruction. Microsc Microanal 10:401–413. https://doi.org/10.1017/S1431927604040437

    Article  Google Scholar 

  6. Allen LJ, McBride W, O’Leary NL, Oxley MP (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100:91–104. https://doi.org/10.1016/j.ultramic.2004.01.012

    Article  Google Scholar 

  7. Haigh S, Kirkland A (2012) High resolution exit wave restoration. In: Vogt T, Dahmen W, Binev P (eds) Modeling nanoscale imaging in electron microscopy. Springer, Berlin, pp 41–72

    Chapter  Google Scholar 

  8. Haigh SJ, Sawada H, Takayanagi K, Kirkland AI (2010) Exceeding conventional resolution limits in high-resolution transmission electron microscopy using tilted illumination and exit-wave restoration. Microsc Microanal 16:409–415. https://doi.org/10.1017/S1431927610093359

    Article  Google Scholar 

  9. Kirkland AI, Saxton WO, Chau KL, Tsuno K, Kawasaki M (1995) Super-resolution by aperture synthesis: tilt series reconstruction in CTEM. Ultramicroscopy 57:355–374. https://doi.org/10.1016/0304-3991(94)00191-O

    Article  Google Scholar 

  10. Kirkland AI, Saxton WO, Chand G (1997) Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 46:11–22

    Article  Google Scholar 

  11. Haigh SJ, Sawada H, Kirkland AI (2009) Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Philos Trans R Soc A Math Phys Eng Sci 367:3755–3771. https://doi.org/10.1098/rsta.2009.0124

    Article  Google Scholar 

  12. Chang L-Y, Kirkland AI (2006) Comparisons of linear and nonlinear image restoration. Microsc Microanal 12:469–475. https://doi.org/10.1017/S1431927606060582

    Article  Google Scholar 

  13. Kirkland EJ (1982) Nonlinear high resolution image processing of conventional transmission electron micrographs. Ultramicroscopy 9:45–64. https://doi.org/10.1016/0304-3991(82)90228-5

    Article  Google Scholar 

  14. Kirkland EJ (1984) Improved high resolution image processing of bright field electron micrographs. Ultramicroscopy 15:151–172. https://doi.org/10.1016/0304-3991(84)90037-8

    Article  Google Scholar 

  15. Coene WMJ, Thust A, de Beeck MO, Van Dyck D (1996) Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64:109–135. https://doi.org/10.1016/0304-3991(96)00010-1

    Article  Google Scholar 

  16. http://www.hremresearch.com/Eng/plugin/FTSREng.html

  17. Meyer RR, Kirkland AI, Saxton WO (2002) A new method for the determination of the wave aberration function for high resolution TEM: 1. Measurement of the symmetric aberrations. Ultramicroscopy 92:89–109. https://doi.org/10.1016/S0304-3991(02)00071-2

    Article  Google Scholar 

  18. Meyer RR, Kirkland AI, Saxton WO (2004) A new method for the determination of the wave aberration function for high-resolution TEM.: 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99:115–123. https://doi.org/10.1016/j.ultramic.2003.11.001

    Article  Google Scholar 

  19. Kirkland AI, Chang SL-Y, Hutchison JL (2007) Atomic resolution transmission electron microscopy. In: Hawkes PW, Spence JCH (eds) Science of microscopy. Springer, New York, pp 3–64

    Chapter  Google Scholar 

  20. Sternlicht H, Rheinheimer W, Hoffmann MJ, Kaplan WD (2016) The mechanism of grain boundary motion in SrTiO3. J Mater Sci 51:467–475. https://doi.org/10.1007/s10853-015-9058-1

    Article  Google Scholar 

  21. Rheinheimer W, Hoffmann MJ (2015) Non-arrhenius behavior of grain growth in strontium titanate: new evidence for a structural transition of grain boundaries. Scr Mater 101:68–71. https://doi.org/10.1016/j.scriptamat.2015.01.021

    Article  Google Scholar 

  22. Rheinheimer W, Bäurer M, Handwerker CA, Blendell JE, Hoffmann MJ (2015) Growth of single crystalline seeds into polycrystalline strontium titanate: anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries. Acta Mater 95:111–123. https://doi.org/10.1016/j.actamat.2015.05.019

    Article  Google Scholar 

  23. Baurer M, Kungl H, Hoffmann MJ (2009) Influence of Sr/Ti stoichiometry on the densification behavior of strontium titanate. J Am Ceram Soc 92:601–606. https://doi.org/10.1111/j.1551-2916.2008.02920.x

    Article  Google Scholar 

  24. Rheinheimer W, Bäurer M, Chien H, Rohrer GS, Handwerker CA, Blendell JE, Hoffmann MJ (2015) The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Mater 82:32–40. https://doi.org/10.1016/j.actamat.2014.08.065

    Article  Google Scholar 

  25. Baram M, Kaplan WD (2008) Quantitative HRTEM analysis of FIB prepared specimens. J Microsc 232:395–405. https://doi.org/10.1111/j.1365-2818.2008.02134.x

    Article  Google Scholar 

  26. Sternlicht H, Rheinheimer W, Dunin-Borkowski RE, Hoffmann MJ, Kaplan WD (2018) Characterization of grain boundary disconnections in SrTiO3 Part I: the dislocation component of grain boundary disconnections. J Mater Sci. https://doi.org/10.1007/s10853-018-3096-4

    Google Scholar 

  27. Williams DB, Carter CB (2009) Transmission electron microscopy. Springer, New York

    Book  Google Scholar 

  28. Cowley JM, Moodie AF (1957) Fourier images: I—the point source. Proc Phys Soc Sect B 70:486–496

    Article  Google Scholar 

  29. Cowley JM, Moodie AF (1957) Fourier images: II—the out-of-focus patterns. Proc Phys Soc Sect B 70:497–504

    Article  Google Scholar 

  30. Cowley JM, Moodie AF (1957) Fourier images: III—finite sources. Proc Phys Soc Sect B 70:505–513

    Article  Google Scholar 

  31. Cowley JM, Moodie AF (1960) Fourier images IV: the phase grating. Proc Phys Soc 76:378–384

    Article  Google Scholar 

  32. Stadelmann PA (1987) EMS—a software package for electron-diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145. https://doi.org/10.1016/0304-3991(87)90080-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported via a German-Israel Fund (GIF) Grant No. I-1276-401.10/2014. The authors acknowledge the British Council for funding a visit by HS to the UK. AIK acknowledges the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative Reference 312483-ESTEEM2. Financial support from EPSRC (Platform Grant EP/K032518/1) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne D. Kaplan.

Additional information

Hadas Sternlicht: Conducted when the author was at Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa, Israel.

Wolfgang Rheinheimer: Conducted when the author was at Karlsruhe Institute of Technology, Institute of Applied Materials, Karlsruhe, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sternlicht, H., Rheinheimer, W., Kim, J. et al. Characterization of grain boundary disconnections in SrTiO3 Part II: the influence of superimposed disconnections on image analysis. J Mater Sci 54, 3710–3725 (2019). https://doi.org/10.1007/s10853-018-3095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3095-5

Keywords

Navigation