Skip to main content

Advertisement

Log in

Phase-change behavior of hot-pressed methylammonium lead bromide hybrid perovskites

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The investigation of hot-pressed methylammonium lead bromide (MAPbBr3) is reported. The as-prepared materials consisted of microcrystallites (30–500 μm size) with a non-centrosymmetric pseudo-cubic tetragonal crystalline structure (P4 mm space group). The thermal analysis under air showed a thermal stability of MAPbBr3 perovskite till T = 250 °C and a broad endothermic event at T = 371 °C (melting point of solid PbBr2). Under increasing pressure at room temperature, the MA–Pb–Br system retained the pseudo-cubic tetragonal structure, the optical adsorption spectra displayed a strong absorption edge between 570 and 572 nm, and the Tauc plots revealed a direct semiconducting behavior with band energy gaps around 2.20(± 0.01) eV. The steady-state emission (PL) photoluminescence spectra (excitation wavelengths λexc = 380 nm) showed an emission band at ~ 574 nm. With increase in the temperature (under constant pressure and treatment time), the MA–Pb–Br system turned into the higher cubic symmetry (space group \(Pm\, \bar{3} m\)), the absorption edges shifted to 571–575 nm, and at T = 120 °C, the absorbance profile begins to increase at higher wavelengths (> 600 nm). By increasing the pressure at constant temperature, the perovskite adopted the cubic structure and a slight decrease in the energy band gap (2.17 eV for T = 150 °C and P = 15 MPa) was recorded. With increase in the hot-pressing time at T = 150 °C and P = 20 MPa, the optical absorption edges remained at ~ 575 nm; however, the decrease in the absorbance can indicate a degradation of the materials. The changes in the emission mechanism(s) of the hot-pressed materials can be related to the observed change in the crystalline structure and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Shi Z, Guo J, Chen Y, Li Q, Pan Y, Zhang H, Xia Y, Huang W (2017) Lead-free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv Mater 29:1605005

    Article  Google Scholar 

  2. Huang J, Shao Y, Dong Q (2015) Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J Phys Chem Lett 6:3218–3227

    Article  CAS  Google Scholar 

  3. Koh TM, Krishnamoorthy T, Yantara N, Shi C, Leong WL, Boix PP, Grimsdale AC, Mhaisalkar SG, Mathews N (2015) Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J Mater Chem A 3:14996–15000. https://doi.org/10.1557/jmr.2017.418

    Article  CAS  Google Scholar 

  4. Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522

    Article  CAS  Google Scholar 

  5. De Wolf S, Holovsky J, Moon SJ, Löper P, Niesen B, Ledinsky M, Haug FJ, Yum JH, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039

    Article  Google Scholar 

  6. Zhumekenov AA, Saidaminov MI, Haque MA, Alarousu E, Sarmah SP, Murali B, Dursun I, Xiao XH, Abdelhady AL, Wu T, Mohammed OF, Bakr OM (2016) Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett 1:32–37

    Article  CAS  Google Scholar 

  7. Fu Y, Zhu H, Schrader AW, Liang D, Ding Q, Joshi P, Hwang L, Zhu XY, Jin S (2016) Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett 16:1000–1008

    Article  CAS  Google Scholar 

  8. Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10:391–402

    Article  CAS  Google Scholar 

  9. Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos LM, Credgington D, Hanush F, Bein T, Snaith HJ, Friend RH (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9:687–692

    Article  CAS  Google Scholar 

  10. Maculan G, Sheikh AD, Abdelhady AL, Saidaminov MI, Haque MA, Murali B, Alarousu E, Mohammed OF, Wu T, Bakr OM (2015) CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible–blind UV-photodetector. J Phys Chem Lett 6:3781–3786

    Article  CAS  Google Scholar 

  11. Chen Q, De Marco N, Yang Y, Song TB, Chen CC, Zhao H, Hong Z, Zhou H, Yang Y (2015) Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10:355–396

    Article  CAS  Google Scholar 

  12. Dimesso L, Fasel C, Lakus-Wollny K, Mayer T, Jaegermann W (2017) Thermal stability of lead-free CH3NH3SnxI3 systems (0.9 ≤ x ≤ 1.1) for photovoltaics. Mater Sci Semicond Proc 68:152–158

    Article  CAS  Google Scholar 

  13. Dimesso L, Mayer T, Jaegermann W (2018) Investigation of methylammonium tin strontium bromide perovskite systems. ECS J Solid State Sci Technol 7:R27–R33

    Article  CAS  Google Scholar 

  14. Dimesso L, Stöhr M, Das C, Mayer T, Jaegermann W (2017) Investigation on the properties of hybrid CH3NH3SnxI3 (0.9 ≤ x  ≤ 1.4) perovskite systems. J Mater Res 32:1132–1141

    Article  Google Scholar 

  15. Wang L, Huang X, Li D, Li F, Zhao Z, Li W, Huang Y, Wu G, Zhou Q, Liu B, Cui T (2015) Pressure-induced amorphization and recrystallization of SnI2. J Phys Chem C 119:19312–19317

    Article  CAS  Google Scholar 

  16. Jaffe A, Lin Y, Beavers CM, Voss J, Mao WL, Karunadasa HI (2016) High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent Sci 2:201–209

    Article  CAS  Google Scholar 

  17. Pourdavoud N, Mayer A, Buchmüller M, Brinkmann K, Häger T, Hu T, Heiderhoff R, Shutsko I, Görrn P, Chen Y, Scheer H-C, Riedl T (2018) Distributed feedback lasers based on MAPbBr 3. Adv Mater Technol 3:1700253

    Article  Google Scholar 

  18. Onoda-Yamamuro N, Yamamuro O, Matsuo T, Suga H (1992) p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals. J Phys Chem Solids 53:277–281

    Article  CAS  Google Scholar 

  19. Matsushima T, Fujihara T, Qin C, Terakawa S, Esaki Y, Hwang S, Sandanayaka ASD, Potscavage WJ Jr, Adachi C (2015) Morphological control of organic–inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells. J Mater Chem A 3:17780–17787

    Article  CAS  Google Scholar 

  20. Nejand BA, Gharibzadeh S, Ahmadi V, Reza Shahverdi H (2016) Novel solvent-free perovskite deposition in fabrication of normal and inverted architectures of perovskite solar cells. Sci Rep 6:33649

    Article  CAS  Google Scholar 

  21. Swainson IP, Tucker MG, Wilson DJ, Winkler B, Milman V (2007) Pressure response of an organic–inorganic perovskite: methylammonium lead bromide. Chem Mater 19:2401–2405

    Article  CAS  Google Scholar 

  22. Matsuishi K, Ishihara T, Onari S, Chang YH, Park CH (2004) Optical properties and structural phase transitions of lead-halide based inorganic–organic 3D and 2D perovskite semiconductors under high pressure. Phys Status Solidi B 241:3328–3333

    Article  CAS  Google Scholar 

  23. Dimesso L, Dimamay M, Hamburger M, Jaegermann W (2014) Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem Mater 26:6762–6770

    Article  CAS  Google Scholar 

  24. Weller MT, Weber OJ, Henry PF, Di Pumpo AM, Hansen TC (2015) Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem Commun 51:4180–4183

    Article  CAS  Google Scholar 

  25. Haynes WM (ed) Physical constants of inorganic compounds. In: CRC handbook of chemistry and physics, 95th edn (Internet Version 2015). CRC Press/Taylor and Francis, Boca Raton

  26. https://www.sigmaaldrich.com/MSDS/, CAS-No. 6876-37-8625, sigma-aldrich.com. Accessed 18 June 2018

  27. Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D (2016) Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett 7:167–172

    Article  CAS  Google Scholar 

  28. Brunetti B, Cavallo C, Ciccioli A, Gigli G, Latini A (2016) On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci Rep 6:31896. https://doi.org/10.1038/srep31896

    Article  CAS  Google Scholar 

  29. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038

    Article  CAS  Google Scholar 

  30. Zhu Q, Zheng K, Abdellah M, Generalov A, Haase D, Carlson S, Niu Y, Heimdal J, Engdahl A, Messing ME, Pullerits T, Canton SE (2016) Correlating structure and electronic band-edge properties in organolead halide perovskites nanoparticles. Phys Chem Chem Phys 18:14933–14940

    Article  CAS  Google Scholar 

  31. Schmidt LC, Pertegás A, González-Carrero S, Malinkiewicz O, Agouram S, Mínguez Espallargas G, Bolink HJ, Galian RE, Pérez-Prieto J (2014) Nontemplate synthesis of CH3NH3PbBr 3 perovskite nanoparticles. J Am Chem Soc 136:850–853

    Article  CAS  Google Scholar 

  32. Yonggang Wang Y, Lü X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z, Zhao Y (2015) Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J Am Chem Soc 137:11144–11149

    Article  Google Scholar 

  33. Dimesso L, Das C, Stöhr M, Jaegermann W (2017) Investigation of cesium tin/lead iodide (CsSn1-xPbxI3) systems. Mater Res Bull 85:80–89

    Article  CAS  Google Scholar 

  34. Novosad SS, Kovalyuk RO (1997) Absorption, luminescence, and electronic properties of CdI2:Sn2+ crystals. Inorg Mater 33:1183–1188

    CAS  Google Scholar 

  35. Chen J, Wang S, Du Y, Chen L (2013) Temperature-dependent photoluminescence study of Pb2+ doped strontium iodide. IEEE. https://doi.org/10.1109/NSSMIC.2013.6829659

    Article  Google Scholar 

  36. Mayer A, Buchüller M, Wang S, Steinberg C, Papenheim M, Scheer H-C, Pourdavoud N, Haeger T, Riedl T (2017) Thermal nanoimprint to improve the morphology of MAPbX3 (MA = methylammonium, X = I or Br). J Vac Sci Technol B 35:06G803

    Article  Google Scholar 

  37. Frost JM, Butler KT, Brivio F, Hendon CH, van Schilfgaarde M, Walsh A (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks are owed to Mr. J.-C. Jaud for the technical assistance in XRD analysis and to Mrs. C. Fasel for the technical assistance in the thermal measurements. The author thank the Federal Ministry of Research and Development (BMBF) (Project “Perosol” Nr. 03SF0483B) for the financial support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucangelo Dimesso.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Schematic representation of the hot-pressing procedure (Patm is the starting atmospheric pressure, Pn (n ≥ 1) are the intermediate pressure steps, Pfin is the setup pressure, RT is the room temperature, Tfin is the setup temperature) (TIFF 654 kb)

Figure S2

Typical XRD patterns of pressed MAPbBr3 systems at different pressures for t = 600 s at room temperature (TIFF 1259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimesso, L., Wittich, C., Mayer, T. et al. Phase-change behavior of hot-pressed methylammonium lead bromide hybrid perovskites. J Mater Sci 54, 2001–2015 (2019). https://doi.org/10.1007/s10853-018-3009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3009-6

Keywords

Navigation