Skip to main content
Log in

Structural investigations of pulsed laser-deposited NiO epitaxial layers under different fluence values

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The epitaxial NiO layers deposited with higher fluence values are found to be strained, and the strain increases with the fluence values. The X-ray diffraction (XRD) profile taken from the synchrotron beam shows the presence of relaxed grains of NiO in addition to the strained grains, where the fraction of relaxed grains gradually increases with the fluence values. The presence of Pendellosung fringes in the XRD profile for the layers deposited at lower fluence values confirms good interfacial and crystalline qualities. As the fluence value is increased, the Pendellosung fringes start merging indicating relatively poor interfacial and crystalline qualities. The NiO layers are of epitaxial nature and grown along [111] direction with two domain structures that are in-plane rotated by 60° with respect to each other. The analysis of local structures from extended X-ray absorption fine structure measurements also indicates that the NiO lattice is strained at higher fluence values. The Ni–O bond distance does not change with the fluence values; however, Ni–Ni bond distance increases with the fluence values in corroboration with XRD results. The surface topography shows island growth of NiO at lower fluence values giving larger roughness, and these islands start merging with an increase in the fluence values leading to relatively smoother layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Park YR, Kim KJ (2005) Sol–gel preparation and optical characterization of NiO and Ni1−xZnxO thin films. J Cryst Growth 258:380–384

    Article  Google Scholar 

  2. Dogan DD, Caglar Y, Ilican S, Caglar M (2011) Investigation of structural, morphological and optical properties of nickel zinc oxide films prepared by sol–gel method. J Alloys Compd 509:2461–2465

    Article  CAS  Google Scholar 

  3. Newman R, Chernko RM (1959) Optical properties of nickel oxide. Phys Rev 114:1507–1513

    Article  CAS  Google Scholar 

  4. Cho DY, Song SJ, Kim UK, Kim KM, Lee HK, Hwang CS (2013) Spectroscopic investigation of the hole states in Ni-deficient NiO films. J Mater Chem C 1:4334–4338

    Article  CAS  Google Scholar 

  5. Ma XTG, Zhong Z, Zhang H, Su H (2013) Effect of Ni3+ concentration on the resistive switching behaviors of NiO memory devices. Microelectron Eng 108:8–10

    Article  CAS  Google Scholar 

  6. Singh SD, Nandanwar V, Srivastava H, Yadav AK, Bhakar A, Sagdeo PR, Sinha AK, Ganguli T (2015) Determination of the optical gap bowing parameter for ternary Ni1−x ZnxO cubic rocksalt solid solutions. Dalton Trans 44:14793–14798

    Article  CAS  Google Scholar 

  7. Yang X, Liu W, Pan G, Sun Y (2018) Modulation of oxygen in NiO: Cu films toward a physical insight of NiO: Cu/c-Si heterojunction solar cells. J Mater Sci 53:11684–11693. https://doi.org/10.1007/s10853-018-2430-1

    Article  CAS  Google Scholar 

  8. Wang H, Hou D, Qiu Z, Kikkawa T, Saitoh E, Jin X (2017) Antiferromagnetic anisotropy determination by spin Hall magnetoresistance. J Appl Phys 122:083907-1–083907-6

    Google Scholar 

  9. Fischer J, Gomonay O, Schlitz R, Ganzhorn K, Vlietstra N, Althammer M, Huebl H, Opel M, Gross R, Goennenwein STB, Geprags S (2018) Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures. Phys. Rev. B 97:014417-1–014417-9

    Google Scholar 

  10. Holanda J, Maior DS, Santos OA, Vilela-Leao LH, Mendes JBS, Azevedo A, Rodriguez-Suarez RL, Rezende SM (2017) Spin Seebeck effect in the antiferromagnet nickel oxide at room temperature. Appl Phys Lett 111:172405-1–172405-5

    Article  Google Scholar 

  11. Viswanathy B, Koy C, Ramanathan S (2011) Thickness-dependent orientation evolution in nickel thin films grown on yttria-stabilized zirconia single crystals. Philos Mag 34:4311–4323

    Article  Google Scholar 

  12. Singh SD, Nand M, Ajimsha RS, Upadhyay A, Kamparath R, Mukherjee C, Misra P, Sinha AK, Jha SN, Ganguli T (2016) Determination of band offsets at strained NiO and MgO heterojunction for MgO as an interlayer in heterojunction light emitting diode applications. Appl Surf Sci 389:835–839

    Article  CAS  Google Scholar 

  13. Lindahl E, Lub J, Ottosson M, Carlsson JO (2009) Epitaxial NiO (1 0 0) and NiO (1 1 1) films grown by atomic layer deposition. J Cryst Growth 311:4082–4088

    Article  CAS  Google Scholar 

  14. Yangn JL, Lai YS, Chen JS (2005) Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering. Thin Solid Films 488:242–246

    Article  Google Scholar 

  15. Nakagawara O, Okada K, Borowiak AS, Hattori AN, Murayama K, Tanaka N, Tanaka H (2017) Epitaxial crystallization of self-assembled ZnO–NiO nanopillar system. Appl Phys Express 10:075501-1–075501-4

    Article  Google Scholar 

  16. Singh SD, Nand M, Das A, Ajimsha RS, Upadhyay A, Kamparath R, Shukla DK, Mukherjee C, Misra P, Rai SK, Sinha AK, Jha SN, Phase DM, Ganguli T (2016) Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques. J Appl Phys 119:165302-1–165302-6

    Google Scholar 

  17. Kakehi Y, Nakao S, Satoh K, Kusaka T (2002) Room-temperature epitaxial growth of NiO (1 1 1) thin films by pulsed laser deposition. J Cryst Growth 237239:591–595

    Article  Google Scholar 

  18. Hotovy I, Huran J, Spiess L (2004) Characterization of sputtered NiO films using XRD and AFM. J Mater Sci 39:2609–2612. https://doi.org/10.1023/B:JMSC.0000020040.77683.20

    Article  CAS  Google Scholar 

  19. Baraik K, Singh SD, Kumar Y, Ajimsha RS, Misra P, Jha SN, Ganguli T (2017) Epitaxial growth and band alignment properties of NiO/GaN heterojunction for light emitting diode applications. Appl Phys Lett 110:191603-1–191603-5

    Article  Google Scholar 

  20. Chen TF, Wang AJ, Shang BY, Wu ZL, Li YL, Wang YS (2015) Property modulation of NiO films grown by radio frequency magnetron sputtering. J Alloys Compd 643:167–173

    Article  CAS  Google Scholar 

  21. Kokubun Y, Amano Y, Meguro Y, Nakagomi S (2015) NiO films grown epitaxially on MgO substrates by sol–gel method. Thin Solid Films 601:76–79

    Article  Google Scholar 

  22. Molaei R, Bayati R, Narayan J (2013) Crystallographic characteristics and p-type to n-type transition in epitaxial NiO thin film. Cryst Growth Des 13:5459–5465

    Article  CAS  Google Scholar 

  23. Singh SD, Das A, Ajimsha RS, Singh MN, Upadhyaya A, Kamparath R, Mukherjeec C, Misra P, Rai SK, Sinha AK, Ganguli T (2017) Studies on structural and optical properties of pulsed laser deposited NiO thin films under varying deposition parameters. Mater Sci Semicond Process 66:186–190

    Article  CAS  Google Scholar 

  24. Singh SD, Ajimsha RS, Mukherjee C, Kumar R, Kukreja LM, Ganguli T, Alloys J (2014) Realization of epitaxial ZnO layers on GaP (1 1 1) substrates by pulsed laser deposition. Compounds 617:921–924

    Article  CAS  Google Scholar 

  25. Podpirka A, Balakrishnan V, Ramanathan S (2013) Heteroepitaxy and crystallographic orientation transition in La1.875Sr0.125NiO4 thin films on single crystal SrTiO3. J Mater Res 28:1420–1431

    Article  CAS  Google Scholar 

  26. Singh SD, Poswal AK, Kamal C, Rajput P, Chakrabarti A, Jha SN, Ganguli T (2017) Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure. Solid State Commun 259:40–44

    Article  CAS  Google Scholar 

  27. Schnohr CS, Araujo LL, Kluth P, Sprouster DJ, Foran GJ, Ridgway MC (2008) Atomic-scale structure of Ga1−xInxP alloys measured with extended X-ray absorption fine structure spectroscopy. Phys Rev B 78:115201-1–115201-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. P. Misra and Dr. R. S. Ajimsha for their help in PLD growth of the samples and Dr. Archna Sagadeo for her help in ADXRD measurements. Dr. S. K. Rai is acknowledged for the fruitful discussions. The authors acknowledge Dr. P. A. Naik, Director RRCAT, for his constant support during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.D., Patra, N., Singh, M.N. et al. Structural investigations of pulsed laser-deposited NiO epitaxial layers under different fluence values. J Mater Sci 54, 1992–2000 (2019). https://doi.org/10.1007/s10853-018-3004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3004-y

Keywords

Navigation