Skip to main content

Advertisement

Log in

Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bismuth and strontium ions were successfully substituted into hydroxyapatite (HAP) lattice upon the chemical formula \( {\text{Bi}}_{x} {\text{Sr}}_{y} {\text{Ca}}_{10 - x - y} ({\text{PO}}_{4} )_{6} \left( {\text{OH}} \right)_{2} \) via co-precipitation microwave-assisted route. The samples with different concentrations were investigated via X-ray diffraction, Fourier transform infrared, field emission scanning electron microscopy, thermogravimetric analysis and microhardness. In addition, lattice parameters, lattice distortion and crystallite size upon different models were computed. The two ions competed to replace both Ca2+ sites, and it was found that Bi3+ preferred Ca(2), while Sr2+ selected Ca(1). The hardness was enhanced via substitution where the highest value reached 3.1 GPa at the highest concentration of Bi3+ ions. This study has displayed that co-substituted ions into HAP can cause a great influence on its physico-chemical properties. The thorough study of the co-substitution effects is needed to deepen the understanding of synthetic HAP which may contribute in growth its applications particularly in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Mansour SF, El-dek SI, Dorozhkin SV, Ahmed MK (2017) Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. New J Chem 41:13773–13783

    Article  CAS  Google Scholar 

  2. Mansour SF, El-Dek SI, Ahmed MK (2017) Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci Rep 7:43202-1–43202-21

    Article  Google Scholar 

  3. Popescu-Pelin G, Sima F, Sima LE, Mihailescu CN, Luculescu C, Iordache I et al (2017) Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: comparative study. Appl Surf Sci 418:580–588

    Article  CAS  Google Scholar 

  4. Lowry N, Brolly M, Han Y, McKillop S, Meenan BJ, Boyd AR (2018) Synthesis and characterisation of nanophase hydroxyapatite co-substituted with strontium and zinc. Ceram Int 44:7761–7770

    Article  CAS  Google Scholar 

  5. Shanmugam S, Gopal B (2014) Antimicrobial and cytotoxicity evaluation of aliovalent substituted hydroxyapatite. Appl Surf Sci 303:277–281

    Article  CAS  Google Scholar 

  6. de Leeuw NH (2010) Computer simulations of structures and properties of the biomaterial hydroxyapatite. J Mater Chem 20:5376–5389

    Article  Google Scholar 

  7. Bulanov EN, Korshak KS, Lelet MI, Knyazev AV, Baikie T (2018) Bi-apatite: synthesis, crystal structure and low-temperature heat capacity. J Chem Thermodyn 124:74–78

    Article  CAS  Google Scholar 

  8. Kazin PE, Pogosova MA, Trusov LA, Kolesnik IV, Magdysyuk OV, Dinnebier RE (2016) Crystal structure details of La- and Bi-substituted hydroxyapatites: evidence for LaO+ and BiO+ with a very short metal–oxygen bond. J Solid State Chem 237:349–357

    Article  CAS  Google Scholar 

  9. Al-Hazmi FE (2016) Synthesis and electrical properties of Bi doped hydroxyapatite ceramics. J Alloy Compd 665:119–123

    Article  CAS  Google Scholar 

  10. Sumathi S, Gopal B (2015) In vitro degradation of multisubstituted hydroxyapatite and fluorapatite in the physiological condition. J Cryst Growth 422:36–43

    Article  CAS  Google Scholar 

  11. Pogosova MA, Provotorov DI, Eliseev AA, Jansen M, Kazin PE (2015) Synthesis and characterization of the Bi-for-Ca substituted copper-based apatite pigments. Dyes Pigments 113:96–101

    Article  CAS  Google Scholar 

  12. Boyd AR, Rutledge L, Randolph LD, Meenan BJ (2015) Strontium-substituted hydroxyapatite coatings deposited via a co-deposition sputter technique. Mater Sci Eng C Mater Biol Appl 46:290–300

    Article  CAS  Google Scholar 

  13. Kaygili O, Keser S, Kom M, Eroksuz Y, Dorozhkin SV, Ates T et al (2015) Strontium substituted hydroxyapatites: synthesis and determination of their structural properties, in vitro and in vivo performance. Mater Sci Eng C Mater Biol Appl 55:538–546

    Article  CAS  Google Scholar 

  14. Bootchanont A, Sailuam W, Sutikulsombat S, Temprom L, Chanlek N, Kidkhunthod P et al (2017) Synchrotron X-ray absorption spectroscopy study of local structure in strontium-doped hydroxyapatite. Ceram Int 43:11023–11027

    Article  CAS  Google Scholar 

  15. Bigi A, Falini G, Gazzano M, Roveri N, Tedesco E (1998) Structural refinements of strontium substituted hydroxylapatites. Mater Sci Forum 278–281:814–819

    Article  Google Scholar 

  16. O’Donnell MD, Fredholm Y, de Rouffignac A, Hill RG (2008) Structural analysis of a series of strontium-substituted apatites. Acta Biomater 4:1455–1464

    Article  Google Scholar 

  17. Curran DJ, Fleming TJ, Towler MR, Hampshire S (2011) Mechanical parameters of strontium doped hydroxyapatite sintered using microwave and conventional methods. J Mech Behav Biomed Mater 4:2063–2073

    Article  CAS  Google Scholar 

  18. Zawisza K, Wiglusz RJ (2017) Preferential site occupancy of Eu3+ ions in strontium hydroxyapatite nanocrystalline—Sr10(PO4)6(OH)2—structural and spectroscopic characterisation. Dalton Trans 46:3265–3275

    Article  CAS  Google Scholar 

  19. Zhang Y-G, Zhu Y-J, Chen F (2017) Novel interconnected nanochannel hydroxyapatite ceramics: synthesis, microstructure, and permeability. Ceram Int 43:5403–5411

    Article  CAS  Google Scholar 

  20. Zaharia A, Muşat V, Anghel EM, Atkinson I, Mocioiu O-C, Buşilă M et al (2017) Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization. Ceram Int 43:11390–11402

    Article  CAS  Google Scholar 

  21. Venkateswarlu K, Chandra Bose A, Rameshbabu N (2010) X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys B 405:4256–4261

    Article  CAS  Google Scholar 

  22. Matsunaga K, Kuwabara A (2007) First-principles study of vacancy formation in hydroxyapatite. Physical Review B 75:014102-1–014102-9

    Article  Google Scholar 

  23. Mansour SF, El-dek SI, Ahmed MA, Abd-Elwahab SM, Ahmed MK (2016) Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases. Appl Nanosci 6:991–1000

    Article  CAS  Google Scholar 

  24. Prabhu YT, Rao KV, Kumar VSS, Kumari BS (2014) X-ray analysis by Williamson–Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng 04:21–28

    Article  CAS  Google Scholar 

  25. Zhang J-M, Zhang Y, Xu K-W, Ji V (2006) General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun 139:87–91

    Article  CAS  Google Scholar 

  26. Hing KA, Best SM, Bonfield W (1999) Characterization of porous hydroxyapatite. J Mater Sci Mater Med 10:135–145

    Article  CAS  Google Scholar 

  27. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  28. Pérez-Maqueda LA, Sánchez-Jiménez PE, Criado JM (2005) Evaluation of the integral methods for the kinetic study of thermally stimulated processes in polymer science. Polymer 46:2950–2954

    Article  Google Scholar 

  29. Faust JJ, Christenson W, Doudrick K, Ros R, Ugarova TP (2017) Development of fusogenic glass surfaces that impart spatiotemporal control over macrophage fusion: direct visualization of multinucleated giant cell formation. Biomaterials 128:160–171

    Article  CAS  Google Scholar 

  30. Zhang J-M, Zhang Y, Xu K-W, Ji V (2007) Anisotropic elasticity in hexagonal crystals. Thin Solid Films 515:7020–7024

    Article  CAS  Google Scholar 

  31. Kohlhauser C, Hellmich C (2012) Determination of Poisson’s ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: application to metals and wood. Eur J Mech A Solids 33:82–98

    Article  Google Scholar 

  32. Shuai C, Feng P, Zhang L, Gao C, Hu H, Peng S et al (2013) Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds. Sci Technol Adv Mater 14:055002-1–055002-10

    Article  Google Scholar 

  33. Mg Holthaus, Twardy S, Stolle J, Riemer O, Treccani L, Brinksmeier E et al (2012) Micromachining of ceramic surfaces: hydroxyapatite and zirconia. J Mater Process Technol 212:614–624

    Article  Google Scholar 

  34. Kiehlbauch JA, Hannett GE, Salfinger M, Archinal W, Monserrat C, Carlyn C (2000) Use of the national committee for clinical laboratory standards guidelines for disk diffusion susceptibility testing in New York state laboratories. J Clin Microbiol 38:3341–3348

    CAS  Google Scholar 

  35. Jorgensen JH, Swenson JM, Tenover FC, Ferraro MJ, Hindler JA, Murray PR (1994) Development of interpretive criteria and quality control limits for broth microdilution and disk diffusion antimicrobial susceptibility testing of Streptococcus pneumoniae. J Clin Microbiol 32:2448–2459

    CAS  Google Scholar 

  36. Zuo G, Wei X, Sun H, Liu S, Zong P, Zeng X et al (2017) Morphology controlled synthesis of nano-hydroxyapatite using polyethylene glycol as a template. J Alloy Compd 692:693–697

    Article  CAS  Google Scholar 

  37. Moreira MP, de Almeida Soares GD, Dentzer J, Anselme K, de Sena LA, Kuznetsov A et al (2016) Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium. Mater Sci Eng C Mater Biol Appl 61:736–743

    Article  CAS  Google Scholar 

  38. Zheng X, Hui J, Li H, Zhu C, Hua X, Ma H et al (2017) Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods. Mater Sci Eng C Mater Biol Appl 75:699–705

    Article  CAS  Google Scholar 

  39. Ahmed MA, Mansour SF, El-dek SI, Abd-Elwahab SM, Ahmed MK (2014) Characterization and annealing performance of calcium phosphate nanoparticles synthesized by co-precipitation method. Ceram Int 40:12807–12820

    Article  CAS  Google Scholar 

  40. Zhang N, Zhai D, Chen L, Zou Z, Lin K, Chang J (2014) Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater Sci Eng C Mater Biol Appl 37:286–291

    Article  CAS  Google Scholar 

  41. Zhong S, Chen J, Li Q, Wang Z, Shi X, Lin K et al (2017) Assembly synthesis of spherical hydroxyapatite with hierarchical structure. Mater Lett 194:1–4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. K. Ahmed or S. I. El-dek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.K., Mansour, S.F., Mostafa, M.S. et al. Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J Mater Sci 54, 1977–1991 (2019). https://doi.org/10.1007/s10853-018-2999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2999-4

Keywords

Navigation