Skip to main content
Log in

Synthesis of molecularly imprinted polymers/NiCo2O4 nanoneedle arrays on 3D graphene electrode for determination of sulfadimidine residue in food

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) molecularly imprinted polymer (MIP) arrays were used for electrochemical sensor to detect sulfadimidine (SM2) residue in food. NiCo2O4 nanoneedle arrays were decorated on the free-standing and highly conductive 3D graphene by a hydrothermal process. Polypyrrole (PPy) was coated onto NiCo2O4 nanoneedle arrays via electropolymerization in the presence of template molecule SM2 to obtain MIP/NiCo2O4 nanoneedle/3D graphene electrode. The desirable detectability of the composite electrode can be ascribed to the unique structure and the synergistic effects of the components: Nanoneedle arrays on 3D graphene offered the matrix to MIP and each nanoneedle as sensing unit was accessible to analyte, resulting in high specific surface area, desirable conductivity, short ion diffusion path and excellent adsorption capacity, which could powerfully boost the electrochemical property for the detection of SM2. Under optimized conditions, a wide linear range over SM2 of 0.2–1000 ng/mL with a detection limit of 0.169 ng/mL (S/N = 3) was obtained. The developed sensor also had favorable recovery of 92.3–102.23% and the relative standard deviation of 2.27–4.10%. The MIP array sensor provided an efficient tool for the selective and rapid detection of SM2 in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  Google Scholar 

  2. Kummerer K (2009) Antibiotics in the aquatic environment-a review, Part 1. Chemosphere 75:417–434

    Article  Google Scholar 

  3. Galarini R, Diana F, Moretti S, Puppini B, Saluti G, Persic L (2014) Development and validation of a new qualitative elisa screening for multiresidue detection of sulfonamides in food and feed. Food Control 35:300–310

    Article  CAS  Google Scholar 

  4. Verheijen R, Stouten P, Cazemier G, Haasnoot W (1998) Development of a one step strip test for the detection of sulfadimidine residues. Analyst 123:2437–2441

    Article  CAS  Google Scholar 

  5. Dmitrienko SG, Kochuk EV, Apyari VV, Tolmacheva VV, Zolotov YA (2014) Recent advances in sample preparation techniques and methods of sulfonamides detection-a review. Anal Chim Acta 850:6–25

    Article  CAS  Google Scholar 

  6. Rao TN, Sarada BV, Tryk DA, Fujishima A (2000) Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. J Electroanal Chem 491:175–181

    Article  CAS  Google Scholar 

  7. Shehab OR, Mansour AM (2014) New thiocyanate potentiometric sensors based on sulfadimidine metal complexes: experimental and theoretical studies. Biosens Bioelectron 57:77–84

    Article  CAS  Google Scholar 

  8. Song YQ, Li YX, Lu YH, Liu SP, Hu XL (2010) Determination of sulfadimidine with potassium permanganate by resonance rayleigh scattering technique. J Southwest Univ (Nat Sci Edn) 32:64–66

    CAS  Google Scholar 

  9. He B (2017) Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/functionalized graphene. Int J Electrochem Sci 12:3001–3011

    Article  CAS  Google Scholar 

  10. Chen Y, Zhuo M, Deng J, Xu Z, Li Q, Wang T (2014) Reduced graphene oxide networks as an effective buffer matrix to improve the electrode performance of porous NiCo2O4 nanoplates for lithium-ion batteries. J Mater Chem A 2:4449–4456

    Article  CAS  Google Scholar 

  11. Hu L, Wu L, Liao M, Hu X, Fang X (2012) Electrical transport properties of large, individual NiCo2O4 nanoplates. Adv Funct Mater 22:998–1004

    Article  CAS  Google Scholar 

  12. Huang W, Cao Y, Chen Y, Peng J, Lai X, Tu J (2017) Fast synthesis of porous NiCo2O4, hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor. Appl Surf Sci 396:804–811

    Article  CAS  Google Scholar 

  13. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  14. Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MC (2012) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B Chem 157:310–313

    Article  Google Scholar 

  15. Kibechu RW, Mamo MA, Msagati TAM, Sampath S, Mamba BB (2014) Synthesis and application of reduced graphene oxide and molecularly imprinted polymers composite in chemo sensor for trichloroacetic acid detection in aqueous solution. Phys Chem Earth 76:49–53

    Article  Google Scholar 

  16. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40:2922–2942

    Article  CAS  Google Scholar 

  17. Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors-the electrochemical approach. Anal Bioanal Chem 402:1827–1846

    Article  CAS  Google Scholar 

  18. Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B (2010) A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron 25:1166–1172

    Article  CAS  Google Scholar 

  19. Gholami H, Yeganeh H, Gharibi R, Jalilian M, Sorayya M (2015) Catalyst free-click polymerization: a versatile method for the preparation of soybean oil based poly1,2,3-triazoles as coatings with efficient biocidal activity and excellent cytocompatibility. Polymer 62:94–108

    Article  CAS  Google Scholar 

  20. Li Y, Li X, Dong C, Qi J, Han X (2010) A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon 48:3427–3433

    Article  CAS  Google Scholar 

  21. Liu YT, Deng J, Xiao XL, Ding L, Yuan YL, Li H, Li XT, Yan XN, Wang LL (2011) Electrochemical sensor based on a poly (para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta 56:4595–4602

    Article  CAS  Google Scholar 

  22. Pernites R, Ponnapati R, Felipe MJ, Advincula R (2011) Electropolymerization molecularly imprinted polymer (E-MIP) spr sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens Bioelectron 26:2766–2771

    Article  CAS  Google Scholar 

  23. Panasyuk TL, Mirsky VM, Piletsky SA, Wolfbeis OS (1999) Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors. Anal Chem 71:4609–4613

    Article  CAS  Google Scholar 

  24. Gong J, Gong Fu, Zeng G, Shen G, Yu R (2003) A novel electrosynthesized polymer applied to molecular imprinting technology. Talanta 61:447–453

    Article  CAS  Google Scholar 

  25. Tan F, Cong L, Li X, Zhao Q, Zhao H, Quan X, Chen J (2016) An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sens Actuators B Chem 233:599–606

    Article  CAS  Google Scholar 

  26. Zhou C, Zhang Y, Li Y, Liu J (2013) Construction of high-capacitance 3D CoO@ polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett 13:2078–2085

    Article  CAS  Google Scholar 

  27. Wei X, Wang C, Dou P, Zheng J, Cao Z, Xu X (2017) Synthesis of NiCo2O4, nanoneedle@polypyrrole arrays supported on 3D graphene electrode for high-performance detection of trace Pb2+. J Mater Sci 52:1–13. https://doi.org/10.1007/s10853-016-0650-9

    Article  CAS  Google Scholar 

  28. Dou P, Jiang A, Fan X, Ma D, Xu X (2015) A coral-inspired nanoscale design of Sn–Cu/PANi/GO hybrid anode materials for high performance lithium-ion batteries. RSC Adv 5:21525–21531

    Article  CAS  Google Scholar 

  29. Hao XJ, Zhou XH, Zhang Y, Liu LH, Long F, Song L, Shi HC (2014) Melamine detection in dairy products by using a reusable evanescent wave fiber-optic biosensor. Sens Actuators B 204:682–687

    Article  CAS  Google Scholar 

  30. Hao XJ, Zhou XH, Zhang Y, Long F, Song L, Shi HC (2015) Portable and reusable optofluidics-based biosensing platform for ultrasensitive detection of sulfadimidine in dairy products. Sensors 15:8302–8313

    Article  CAS  Google Scholar 

  31. Özkorucuklu SP, Şahin Y, Alsancak G (2008) Voltammetric behaviour of sulfamethoxazole on electropolymerized molecularly imprinted overoxidized polypyrrole. Sensors 8:8463–8478

    Article  Google Scholar 

  32. Peng L, Zhang H, Bai Y, Yang J, Wang Y (2015) Unique Synthesis of mesoporous peapod-like NiCo2O4–C nanorods array as an enhanced anode for lithium ion batteries. J Mater Chem A 3:22094–22101

    Article  CAS  Google Scholar 

  33. Chen Y, Qu B, Hu L, Xu Z, Li Q, Wang T (2013) High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet–nanowire cluster arrays as self-supported electrodes. Nanoscale 5:9812–9820

    Article  CAS  Google Scholar 

  34. Zhang C, Kuila T, Kim NH, Lee SH, Lee JH (2015) Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89:328–339

    Article  CAS  Google Scholar 

  35. Kota M, Yu X, Yeon SH, Cheong HW, Park HS (2016) Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J Power Sources 303:372–378

    Article  CAS  Google Scholar 

  36. Wang B, He X, Li H, Liu Q, Wang J (2014) Optimizing the charge transfer process by designing Co3O4@PPy@ MnO2 ternary core–shell composite. J Mater Chem A 2:12968–12973

    Article  CAS  Google Scholar 

  37. Li J, Lei W, Xu Y, Zhang Y, Xia M, Wang F (2015) Fabrication of polypyrrole-grafted nitrogen-doped graphene and its application for electrochemical detection of paraquat. Electrochim Acta 174:464–471

    Article  CAS  Google Scholar 

  38. Xu J, Gai S, He F, Niu N, Gao P, Chen Y, Yang P (2014) A sandwich-type three-dimensional layered double hydroxide nanosheet array/graphene composite: fabrication and high supercapacitor performance. J Mater Chem A 2:1022–1031

    Article  CAS  Google Scholar 

  39. Zhang H, Li H, Wang H, He K, Wang S, Tang Y, Chen J (2015) NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. J Power Sources 280:640–648

    Article  CAS  Google Scholar 

  40. Li HH, Wang HH, Li WT, Fang XX, Guo XC, Zhou WH, Cao X, Kou DX, Zhou ZJ, Wu SX (2015) A novel electrochemical sensor for epinephrine based on three dimensional molecularly imprinted polymer arrays. Sens Actuators B Chem 222:1127–1133

    Article  Google Scholar 

  41. Zhou Z, Ying H, Liu Y, Xu W, Yang Y, Luan Y, Lu Y, Liu T, Yu S, Yang W (2017) Synthesis of surface molecular imprinting polymer on SiO2-coated CdTe quantum dots as sensor for selective detection of sulfadimidine. Appl Surf Sci 404:188–196

    Article  CAS  Google Scholar 

  42. Liu L, Zhou X, Xu W, Song B, Shi H (2014) Highly sensitive detection of sulfadimidine in water and dairy products by means of an evanescent wave optical biosensor. RSC Adv 4:60227–60233

    Article  CAS  Google Scholar 

  43. He B, Du G (2018) Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. Anal Bioanal Chem 410:2901–2910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (No. 51143009) and Zhejiang Provincial Department of Education Scientific Research Project (No. Y201840053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1417 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Zhang, Z., Zhang, L. et al. Synthesis of molecularly imprinted polymers/NiCo2O4 nanoneedle arrays on 3D graphene electrode for determination of sulfadimidine residue in food. J Mater Sci 54, 2066–2078 (2019). https://doi.org/10.1007/s10853-018-2975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2975-z

Keywords

Navigation