Skip to main content
Log in

Single-step process to produce alumina supported hydroxy-sodalite zeolite membranes

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Membranes based on zeolites have been extensively studied and used to purify/separate H2 or CO2 or other gases, depending on their composition. The deposition of zeolite films onto porous, chemically and thermally stable, substrates can increase their stability, but the production process may require lengthy two-step procedures. In this work, a single-step method was developed for the production of homogeneous hydroxy-sodalite (HS) zeolite films, without seeding and by direct deposition during hydrothermal treatment on cheap and porous alumina substrates. Alumina substrates have been developed with fine porosity (> 35% porosity, 500–600 nm of mean pore diameter), with low resistance to gas flow but reduced surface porosity to favour the deposition of dense films. The single-step growth of HS films with a thickness ranging from a few to 28 μm on alumina was successfully achieved. These membranes have been tested in hydrogen, methane, carbon dioxide and nitrogen, and good results in terms of hydrogen permeance and separation performance were achieved for 10–12-μm-thick HS films on alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. http://energy.gov/eere/fuelcells/hydrogen-resources. Accessed June 2018

  2. Gallucci F, Fernandez E, Corengia P, Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66

    Article  CAS  Google Scholar 

  3. Cardoso SP, Azenha IS, Lin Z, Portugal I, Rodrigues AE, Silva CM (2018) Inorganic membranes for hydrogen separation. Sep Purif Rev 47:229–266

    Article  CAS  Google Scholar 

  4. Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes—state of their development and perspective. Microporous Mesoporous Mater 38(1):3–24

    Article  CAS  Google Scholar 

  5. Antunes R, Borisevich O, Demange D (2016) Numerical analysis of H2/He gas separation experiments performed with a MFI-type tubular zeolite membrane. Chem Eng Res Des 109:327–334

    Article  CAS  Google Scholar 

  6. Ye P, Grahn M, Korelskiy D, Hedlund J (2016) Efficient separation of N2 and He at low temperature using MFI membranes. AIChE J 62(8):2833–2842

    Article  CAS  Google Scholar 

  7. Gong H, Lee SS, Bae TH (2017) Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation. Microporous Mesoporous Mater 237:82–89

    Article  CAS  Google Scholar 

  8. Xu K, Yuan C, Caro J, Huang A (2016) Silver-exchanged zeolite LTA molecular sieving membranes with enhanced hydrogen selectivity. J Membr Sci. 511:1–8

    Article  CAS  Google Scholar 

  9. Lang WZ, Ouyang JX, Guo YJ, Chu LF (2011) Synthesis of tubular faujasite X-type membranes with mullite supports and their gas permeances for N2/CO2 mixtures. Sep Sci Technol 46(11):1716–1725

    Article  CAS  Google Scholar 

  10. Poerio T, Drioli E, Barbieri G, Brunetti A, Cersosimo M, Algieri C (2012) Synthesis of FAU-type zeolite membrane for gas separation. Procedia Eng 44:699–700

    Article  Google Scholar 

  11. Nabavi MS, Mohammadi T, Kazemimoghadam M (2014) Hydrothermal synthesis of hydroxy sodalite zeolite membrane: separation of H2/CH4. Ceram Int 40(4):5889–5896

    Article  CAS  Google Scholar 

  12. Xu X, Bao Y, Song C, Yang W, Liu J, Lin L (2004) Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous Mesoporous Mater 75(3):173–181

    Article  CAS  Google Scholar 

  13. Julbe A, Motuzas J, Cazevielle F, Volle G, Guizard C (2003) Synthesis of sodalite/αAl2O3 composite membranes by microwave heating. Sep Purif Technol 32(1–3):139–149

    Article  CAS  Google Scholar 

  14. Ockwig NW, Nenoff TM (2007) Membranes for hydrogen separation. Chem Rev 107(10):4078–4110

    Article  CAS  Google Scholar 

  15. Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread occurrence of negative thermal expansion in zeolites. J Mater Chem 11(1):212–216

    Article  CAS  Google Scholar 

  16. Den Exter MJ, van Bekkum H, Rijn CJM, Kapteijn F, Moulijn JA, Schellevis H, Beenakker CIN (1997) Stability of oriented silicalite-1 films in view of zeolite membrane preparation. Zeolites 19(1):13–20

    Article  Google Scholar 

  17. Dong J, Lin YS, Hu MZC, Peascoe RA, Payzant EA (2000) Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes. Microporous Mesoporous Mater 34(3):241–253

    Article  CAS  Google Scholar 

  18. Wang Z, Ge Q, Gao J, Shao J, Liu C, Yan Y (2011) High-performance zeolite membranes on inexpensive large-pore supports: highly reproducible synthesis using a seed paste. ChemSusChem 4(11):1570–1573

    Article  CAS  Google Scholar 

  19. Ma J, Shao J, Wang Z, Yan Y (2014) Preparation of zeolite NaA membranes on macroporous alumina supports by secondary growth of gel layers. Ind Eng Chem Res 53(14):6121–6130

    Article  CAS  Google Scholar 

  20. Caro J, Noack M, Kölsch P (2005) Zeolite membranes: from the laboratory scale to technical applications. Adsorption 11(3):215–227

    Article  CAS  Google Scholar 

  21. Coronas J, Santamaría J (1999) Separations using zeolite membranes. Sep Purif Methods 28:127–177

    Article  CAS  Google Scholar 

  22. Huang A, Bux H, Steinbach F, Caro J (2010) Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew Chem Int Ed 49:4958–4961

    Article  CAS  Google Scholar 

  23. Lutterotti L, Mattheis S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. Newsl CPD 21:14–15

    Google Scholar 

  24. Fasolin S, Barison S, Boldrini S, Ferrario A et al (2018) Hydrogen separation by thin vanadium-based multi-layered membranes. Int J Hydrogen Energy 43(6):3235–3243

    Article  CAS  Google Scholar 

  25. Khajavi S, Sartipi S, Gascon J, Jansen JC, Kapteijn F (2010) Thermostability of hydroxy sodalite in view of membrane applications. Microporous Mesoporous Mater 132(3):510–517

    Article  CAS  Google Scholar 

  26. Xu X, Bao Y, Song C, Yang W, Liu J, Lin L (2005) Synthesis, characterization and single gas permeation properties of NaA zeolite membrane. J Membr Sci 249(1–2):51–64

    Article  CAS  Google Scholar 

  27. van Niekerk A, Zah J, Breytenbach JC, Krieg HM (2007) Direct crystallisation of a hydroxy sodalite membrane without seeding using a conventional oven. J Membr Sci 300(1–2):156–164

    Article  Google Scholar 

  28. Zah J, Krieg HM, Breytenbach JC (2007) Single gas permeation through compositionally different zeolite NaA membranes: observations on the intercrystalline porosity in an unconventional, semicrystalline layer. J Membr Sci 287(2):300–310

    Article  CAS  Google Scholar 

  29. Kalantari N, Vaezi MJ, Yadollahi M, Babaluo AA, Bayati B, Kazemzadeh A (2015) Synthesis of nanostructure hydroxy sodalite composite membranes via hydrothermal method: support surface modification and synthesis method effects. Asia Pac J Chem Eng 10(1):45–55

    Article  CAS  Google Scholar 

  30. Huang A, Liang F, Steinbach F, Gesing TM, Caro J (2010) Neutral and cation-free LTA-type aluminophosphate (AlPO4) molecular sieve membrane with high hydrogen permselectivity. J Am Chem Soc 132:2140–2141

    Article  CAS  Google Scholar 

  31. Li YS, Liang FY, Bux H, Feldhoff A, Yang WS, Caro J (2010) Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. Angew Chem Int Ed 49:548–551

    Article  CAS  Google Scholar 

  32. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Caro J (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131:16000–16001

    Article  CAS  Google Scholar 

  33. Huang A, Chen Y, Wang N, Hu Z, Jiang J, Caro J (2012) A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chem Commun 48:10981–10983

    Article  CAS  Google Scholar 

  34. Huang A, Liang F, Steinbach F, Caro J (2010) Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. J Membr Sci 350:5–9

    Article  CAS  Google Scholar 

  35. Liu Y, Hu E, Khan EA, Lai Z (2010) Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J Membr Sci 353:36–40

    Article  CAS  Google Scholar 

  36. Nabavi MS, Mohammadi T, Kazemimoghadam M (2014) Hydrothermal synthesis of hydroxy sodalite zeolite membrane: separation of H2/CH4. Ceram Int 40:5889–5896

    Article  CAS  Google Scholar 

  37. Robeson LM (2008) The upper bond revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Italian Industria 2015 project “Production of renewable energy with minimum impact from biomasses and not dangerous special waste mixes by means of innovative processes”. The authors are grateful to Dr. Rosalba Gerbasi (CNR ICMATE) for XRD analyses and to Dr. Alessia Famengo (CNR ICMATE) for TGA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barison.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasolin, S., Romano, M., Boldrini, S. et al. Single-step process to produce alumina supported hydroxy-sodalite zeolite membranes. J Mater Sci 54, 2049–2058 (2019). https://doi.org/10.1007/s10853-018-2952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2952-6

Keywords

Navigation