Skip to main content
Log in

Combined cerium oxide nanocapping and layer-by-layer coating of porous silicon containers for controlled drug release

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Local drug release in close vicinity of solid tumors is a promising therapeutic approach in cancer therapy. Implantable drug delivery systems can be designed to achieve controlled and sustained drug release. In this study, ultrathin porous membranes of silicon wafer were employed as compatible drug reservoir models. An anticancer model drug, curcumin (CUR), was successfully loaded into porous silicon containers (8.94 ± 0.72% w/w), and then, cerium oxide nanocapping was performed on the open pores for drug protection and release rate prolongation. Next, layer-by-layer surface coating of the drug container with anionic (alginate) and cationic (chitosan) polymers rendered pH-responsivity to the device. The drug release profile was studied using reflectometric interference Fourier transform spectroscopy at different pH conditions. It was determined that faster decomposition of the polymeric layers and subsequent CUR release occur in acidic buffer (pH 5.5) compared to a neutral buffer. Various characterization studies, including dynamic light scattering, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy, contact angle measurement, ultraviolet–visible spectroscopy, and X-ray powder diffraction revealed that our system has the required physicochemical properties to serve as a novel pH-sensitive drug delivery implant for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Santos A, Aw MS, Bariana M, Kumeria T, Wang Y, Losic D (2014) Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B 2:6157–6182. https://doi.org/10.1039/C4TB00548A

    Article  Google Scholar 

  2. Law CS, Santos A, Kumeria T, Losic D (2015) Engineered therapeutic-releasing nanoporous anodic alumina-aluminum wires with extended release of therapeutics. ACS Appl Mater Interfaces 7:3846–3853. https://doi.org/10.1021/am5091963

    Article  Google Scholar 

  3. Aw MS, Kurian M, Losic D (2013) Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci 2:10–34. https://doi.org/10.1039/c3bm60196j

    Google Scholar 

  4. Anglin EJ, Schwartz MP, Ng VP, Perelman LA, Sailor MJ (2004) Engineering the chemistry and nanostructure of porous silicon Fabry-Pérot films for loading and release of a steroid. Langmuir 20:11264–11269. https://doi.org/10.1021/la048105t

    Article  Google Scholar 

  5. Canham LT, Stewart MP, Buriak JM, Reeves CL, Anderson M, Squire EK, Allcock P, Snow PA (2000) Derivatized porous silicon mirrors: implantable optical components with slow resorbability. Phys Status Solidi A 182:521–525. https://doi.org/10.1002/1521-396x(200011)182:1<521::aid-pssa521>3.0.co;2-7

    Article  Google Scholar 

  6. Li YY, Cunin F, Link JR et al (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299:2045–2047. https://doi.org/10.1126/science.1081298

    Article  Google Scholar 

  7. Shahbazi M-A, Hamidi M, Mäkilä EM et al (2013) The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34:7776–7789. https://doi.org/10.1016/j.biomaterials.2013.06.052

    Article  Google Scholar 

  8. Irani YD, Tian Y, Wang M, Klebe S, McInnes SJ, Voelcker NH, Coffer JL, Williams KA (2015) A novel pressed porous silicon-polycaprolactone composite as a dual-purpose implant for the delivery of cells and drugs to the eye. Exp Eye Res 139:123–131. https://doi.org/10.1016/j.exer.2015.08.007

    Article  Google Scholar 

  9. Low SP, Voelcker NH (2014) Biocompatibility of Porous Silicon. In: Canham L (ed) Handbook of porous silicon. Springer, Cham, pp 1–13. https://doi.org/10.1007/978-3-319-04508-5_38-1

    Google Scholar 

  10. Irani YD, Klebe S, McInnes SJP, Jasieniak M, Voelcker NH, Williams KA (2017) Oral mucosal epithelial cells grown on porous silicon membrane for transfer to the rat eye. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-10793-1

    Article  Google Scholar 

  11. Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336. https://doi.org/10.1038/nmat2398

    Article  Google Scholar 

  12. McInnes SJP, Szili EJ, Al-Bataineh SA, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH (2012) Combination of iCVD and porous silicon for the development of a controlled drug delivery system. ACS Appl Mater Interfaces 4:3566–3574. https://doi.org/10.1021/am300621k

    Article  Google Scholar 

  13. Sailor MJ (2011) Porous silicon in practice: preparation, characterization and applications. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim. https://doi.org/10.1002/9783527641901

    Book  Google Scholar 

  14. Correia A, Shahbazi M-A, Mäkilä E, Almeida S, Salonen J, Hirvonen J, Santos HA (2015) Cyclodextrin-modified porous silicon nanoparticles for efficient sustained drug delivery and proliferation inhibition of breast cancer cells. ACS Appl Mater Interfaces 7:23197–23204. https://doi.org/10.1021/acsami.5b07033

    Article  Google Scholar 

  15. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS-Y (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459. https://doi.org/10.1021/ja028650l

    Article  Google Scholar 

  16. Muhammad F, Guo M, Qi W, Sun F, Wang A, Guo Y, Zhu G (2011) pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc 133:8778–8781. https://doi.org/10.1021/ja200328s

    Article  Google Scholar 

  17. Muhammad F, Wang A, Qi W, Zhang S, Zhu G (2014) Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system. ACS Appl Mater Interfaces 6:19424–19433. https://doi.org/10.1021/am5055367

    Article  Google Scholar 

  18. Sancenón F, Pascual L, Oroval M, Aznar E, Martínez-Máñez R (2015) Gated silica mesoporous materials in sensing applications. ChemistryOpen 4:418–437. https://doi.org/10.1002/open.201500053

    Article  Google Scholar 

  19. Wang X, Cui M, Zhou H, Zhang S (2015) DNA-hybrid-gated functional mesoporous silica for sensitive DNA methyltransferase SERS detection. Chem Commun 51:13983–13985. https://doi.org/10.1039/C5CC05463J

    Article  Google Scholar 

  20. Zhang B, Luo Z, Liu J, Ding X, Li J, Cai K (2014) Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J Control Release 192:192–201. https://doi.org/10.1016/j.jconrel.2014.06.037

    Article  Google Scholar 

  21. Tamarov K, Xu W, Osminkina L et al (2016) Temperature responsive porous silicon nanoparticles for cancer therapy—spatiotemporal triggering through infrared and radiofrequency electromagnetic heating. J Controlled Release 241:220–228. https://doi.org/10.1016/j.jconrel.2016.09.028

    Article  Google Scholar 

  22. Wang Y, Lu M, Zhu J, Tian S (2014) Wrapping DNA-gated mesoporous silica nanoparticles for quantitative monitoring of telomerase activity with glucometer readout. J Mater Chem B 2:5847–5853. https://doi.org/10.1039/C4TB00843J

    Article  Google Scholar 

  23. Wen J, Yang K, Liu F, Li H, Xu Y, Sun S (2017) Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 46:6024–6045. https://doi.org/10.1039/C7CS00219J

    Article  Google Scholar 

  24. Babaei M, Abnous K, Taghdisi SM, Amel Farzad S, Peivandi MT, Ramezani M, Alibolandi M (2017) Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine 12:1261–1279. https://doi.org/10.2217/nnm-2017-0028

    Article  Google Scholar 

  25. Sun X, Zhao Y, Lin VS-Y, Slowing II, Trewyn BG (2011) Luciferase and luciferin co-immobilized mesoporous silica nanoparticle materials for intracellular biocatalysis. J Am Chem Soc 133:18554–18557. https://doi.org/10.1021/ja2080168

    Article  Google Scholar 

  26. Yang X, He D, He X et al (2015) A dopamine responsive nano-container for the treatment of pheochromocytoma cells based on mesoporous silica nanoparticles capped with DNA-templated silver nanoparticles. J Mater Chem B 3:7135–7142. https://doi.org/10.1039/C5TB01129A

    Article  Google Scholar 

  27. Bonanno LM, Segal E (2011) Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6:1755–1770. https://doi.org/10.2217/nnm.11.153

    Article  Google Scholar 

  28. Feng W, Nie W, He C, Zhou X, Chen L, Qiu K, Wang W, Yin Z (2014) Effect of pH-responsive alginate/chitosan multilayers coating on delivery efficiency, cellular uptake and biodistribution of mesoporous silica nanoparticles based nanocarriers. ACS Appl Mater Interfaces 6:8447–8460. https://doi.org/10.1021/am501337s

    Article  Google Scholar 

  29. Krismastuti FSH, Bayat H, Voelcker NH, Schönherr H (2015) Real time monitoring of layer-by-layer polyelectrolyte deposition and bacterial enzyme detection in nanoporous anodized aluminum oxide. Anal Chem 87:3856–3863. https://doi.org/10.1021/ac504626m

    Article  Google Scholar 

  30. Lazzara TD, Lau KHA, Knoll W, Janshoff A, Steinem C (2012) Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores, Beilstein. J Nanotechnol 3:475–484. https://doi.org/10.3762/bjnano.3.54

    Google Scholar 

  31. Segal E, Perelman LA, Cunin F, Di Renzo F, Devoisselle J-M, Li YY, Sailor MJ (2007) Confinement of thermoresponsive hydrogels in nanostructured porous silicon dioxide templates. Adv Funct Mater 17:1153–1162. https://doi.org/10.1002/adfm.200601077

    Article  Google Scholar 

  32. Shahbazi M-A, Almeida PV, Mäkilä E, Correia A, Ferreira MPA, Kaasalainen M, Salonen J, Hirvonen J, Santos HA (2014) Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization. Macromol Rapid Commun 35:624–629. https://doi.org/10.1002/marc.201300868

    Article  Google Scholar 

  33. Wu J, Sailor MJ (2009) Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv Funct Mater 19:733–741. https://doi.org/10.1002/adfm.200800921

    Article  Google Scholar 

  34. Feng W, Zhou X, He C, Qiu K, Nie W, Chen L, Wang H, Mo X, Zhang Y (2013) Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J Mater Chem B 1:5886–5898. https://doi.org/10.1039/c3tb21193b

    Article  Google Scholar 

  35. Witzigmann D, Sieber S, Porta F, Grossen P, Bieri A, Strelnikova N, Pfohl T, Prescianotto-Baschong C, Huwyler J (2015) Formation of lipid and polymer based gold nanohybrids using a nanoreactor approach. RSC Adv 5:74320–74328. https://doi.org/10.1039/C5RA13967H

    Article  Google Scholar 

  36. Pacholski C, Sartor M, Sailor MJ, Cunin F, Miskelly GM (2005) Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J Am Chem Soc 127:11636–11645. https://doi.org/10.1021/ja0511671

    Article  Google Scholar 

  37. Wen J, Yang K, Xu Y, Li H, Liu F, Sun S (2016) Construction of A triple-stimuli-responsive system based on cerium oxide coated mesoporous silica nanoparticles. Sci Rep 6:1–10. https://doi.org/10.1038/srep38931

    Article  Google Scholar 

  38. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848–2856. https://doi.org/10.1002/smll.200901048

    Article  Google Scholar 

  39. Karakoti AS, Singh S, Kumar A, Malinska M, Kuchibhatla SVNT, Wozniak K, Self WT, Seal S (2009) PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 131:14144–14145. https://doi.org/10.1021/ja9051087

    Article  Google Scholar 

  40. Kim CK, Kim T, Choi I-Y et al (2012) Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed 51:11039–11043. https://doi.org/10.1002/anie.201203780

    Article  Google Scholar 

  41. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73:549–559. https://doi.org/10.1016/j.cardiores.2006.11.031

    Article  Google Scholar 

  42. Perez JM, Asati A, Nath S, Kaittanis C (2008) Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4:552–556. https://doi.org/10.1002/smll.200700824

    Article  Google Scholar 

  43. Schubert D, Dargusch R, Raitano J, Chan S-W (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91. https://doi.org/10.1016/j.bbrc.2006.01.129

    Article  Google Scholar 

  44. Pautler R, Kelly EY, Huang P-JJ, Cao J, Liu B, Liu J (2013) Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching. ACS Appl Mater Interfaces 5:6820–6825. https://doi.org/10.1021/am4018863

    Article  Google Scholar 

  45. Yang XM, Zhong ZW, Diallo EM, Wang ZH, Yue WS (2014) Silicon wafer wettability and aging behaviors: impact on gold thin-film morphology. Mater Sci Semicond Process 26:25–32. https://doi.org/10.1016/j.mssp.2014.03.044

    Article  Google Scholar 

  46. Wang P-Y, Clements LR, Thissen H, Hung S-C, Cheng N-C, Tsai W-B, Voelcker HN (2012) Screening the attachment and spreading of bone marrow-derived and adipose-derived mesenchymal stem cells on porous silicon gradients. RSC Adv 2:12857–12865. https://doi.org/10.1039/c2ra21557h

    Article  Google Scholar 

  47. Santos A, Kumeria T, Losic D (2013) Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison. Anal Chem 85:7904–7911. https://doi.org/10.1021/ac401609c

    Article  Google Scholar 

  48. Pacholski C (2013) Photonic crystal sensors based on porous silicon. Sensors 13:4694–4713. https://doi.org/10.3390/s130404694

    Article  Google Scholar 

  49. Pacholski C, Sailor MJ (2007) Sensing with porous silicon double layers: a general approach for background suppression. Phys Status Solidi C 4:2088–2092. https://doi.org/10.1002/pssc.200674381

    Article  Google Scholar 

  50. Pacholski C, Yu C, Miskelly GM, Godin D, Sailor MJ (2006) Reflective interferometric Fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2. J Am Chem Soc 128:4250–4252. https://doi.org/10.1021/ja056702b

    Article  Google Scholar 

  51. Pacholski C, Perelman LA, VanNieuwenhze MS, Sailor MJ (2009) Small molecule detection by reflective interferometric Fourier transform spectroscopy (RIFTS). Phys Status Solidi A 206:1318–1321. https://doi.org/10.1002/pssa.200881072

    Article  Google Scholar 

  52. Orosco MM, Pacholski C, Sailor MJ (2009) Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nat Nanotechnol 4:255–258. https://doi.org/10.1038/nnano.2009.11

    Article  Google Scholar 

  53. Kumeria T, Gulati K, Santos A, Losic D (2013) Real-time and in situ drug release monitoring from nanoporous implants under dynamic flow conditions by reflectometric interference spectroscopy. ACS Appl Mater Interfaces 5:5436–5442. https://doi.org/10.1021/am4013984

    Article  Google Scholar 

Download references

Acknowledgements

Support from Dr. Abel Santos (School of Chemical Engineering, The University of Adelaide, Adelaide, Australia) is gratefully acknowledged. In addition, the authors thank Jayesh A. Kulkarni for proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Rahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, M., Rahimi, F., Rezayan, A.H. et al. Combined cerium oxide nanocapping and layer-by-layer coating of porous silicon containers for controlled drug release. J Mater Sci 53, 14975–14988 (2018). https://doi.org/10.1007/s10853-018-2731-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2731-4

Keywords

Navigation