Skip to main content
Log in

Construction of unconventional fluorescent poly(amino ester) polyols as sensing platform for label-free detection of Fe3+ ions and l-cysteine

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inspired by the chromogenic reaction of itaconic anhydride and tertiary amine, fluorescent poly(amino ester) polyols are designed and synthesized by melt polycondensation of itaconic anhydride and triethanolamine. The obtained polymers contain no conventional conjugated fluorophores and still display bright fluorescence and good water solubility. The unconventional fluorescence is speculated to be due to the clusters of oxidized tertiary amines and carbonyl groups. Interestingly, the fluorescent polymers exhibit selective sensitivity to specific metal ions, which quench the fluorescence of the polymers. When various metal ions including Na+, Mg2+, Al3+, K+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Ba2+ and Pb2+ are added to the aqueous polymer solution, only Fe3+ ions decrease dramatically the fluorescence intensity of the polymer solution. Meanwhile, the quenched fluorescence can be recovered by adding l-cysteine. Therefore, the fluorescent polymers can be applied as new sensing platform for label-free detection of Fe3+ ions and l-cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. You C, Miranda OR, Gider B, Ghosh PS, Kim I, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’sensors. Nat Nanotechnol 2:318–323

    Article  Google Scholar 

  2. Feng X, Liu L, Wang S, Zhu D (2010) Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem Soc Rev 39:2411–2419

    Article  Google Scholar 

  3. Pu K, Liu B (2011) Fluorescent conjugated polyelectrolytes for bioimaging. Adv Funct Mater 21:3408–3423

    Article  Google Scholar 

  4. Feng G, Ding D, Liu B (2012) Fluorescence bioimaging with conjugated polyelectrolytes. Nanoscale 4:6150–6165

    Article  Google Scholar 

  5. Chen M, Yin M (2014) Design and development of fluorescent nanostructures for bioimaging. Prog Polym Sci 39:365–395

    Article  Google Scholar 

  6. Koo H, Lee H, Lee S, Min KH, Kim MS, Lee DS, Choi Y, Kwon IC, Kim K, Jeong SY (2010) In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun 46:5668–5670

    Article  Google Scholar 

  7. Zhu C, Liu L, Yang Q, Lv F, Wang S (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 112:4687–4735

    Article  Google Scholar 

  8. Gao GH, Lee DS (2013) Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. J Controll Release 169:180–184

    Article  Google Scholar 

  9. Zhang Y, Yang J (2013) Design strategies for fluorescent biodegradable polymeric biomaterials. J Mater Chem B 1:132–148

    Article  Google Scholar 

  10. Lee WI, Bae Y, Bard AJ (2004) Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc 126:8358–8359

    Article  Google Scholar 

  11. Wang D, Imae T (2004) Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc 126:13204–13205

    Article  Google Scholar 

  12. Yang W, Pan C (2009) Synthesis and fluorescent properties of biodegradable hyperbranched poly (amido amine)s. Macromol Rapid Commun 30:2096–2101

    Article  Google Scholar 

  13. Jiang G, Wang Y, Sun X, Shen J (2010) Facile one-pot approach for preparing fluorescent and biodegradable hyperbranched poly (amidoamine)s. Polym Chem 1:618–620

    Article  Google Scholar 

  14. Yang J, Zhang Y, Gautam S, Liu L, Dey J, Chen W, Mason RP, Serrano CA, Schug KA, Tang L (2009) Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 106:10086–10091

    Article  Google Scholar 

  15. Hu J, Guo J, Xie Z, Shan D, Gerhard E, Qian G, Yang J (2016) Fluorescence imaging enabled poly (lactide-co-glycolide). Acta Biomater 29:307–319

    Article  Google Scholar 

  16. Wu D, Liu Y, He C, Goh SH (2005) Blue photoluminescence from hyperbranched poly (amino ester)s. Macromolecules 38:9906–9909

    Article  Google Scholar 

  17. Shiau S, Juang T, Chou H, Liang M (2013) Synthesis and properties of new water-soluble aliphatic hyperbranched poly (amido acids) with high pH-dependent photoluminescence. Polymer 54:623–630

    Article  Google Scholar 

  18. Restani RB, Morgado PI, Ribeiro MP, Correia IJ, Aguiar-Ricardo A, Bonifácio VDB (2012) Biocompatible polyurea dendrimers with pH-dependent fluorescence. Angew Chem Int Ed 51:5162–5165

    Article  Google Scholar 

  19. Lin Y, Gao J, Liu H, Li Y (2009) Synthesis and characterization of hyperbranched poly (ether amide) s with thermoresponsive property and unexpected strong blue photoluminescence. Macromolecules 42:3237–3246

    Article  Google Scholar 

  20. Lu H, Feng L, Li S, Zhang J, Lu H, Feng S (2015) Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane–poly (amidoamine) dendrimers. Macromolecules 48:476–482

    Article  Google Scholar 

  21. Song G, Lin Y, Zhu Z, Zheng H, Qiao J, He C, Wang H (2015) Strong fluorescence of poly (N-vinylpyrrolidone) and its oxidized hydrolyzate. Macromol Rapid Commun 36:278–285

    Article  Google Scholar 

  22. Niu S, Yan H, Chen Z, Yuan L, Liu T, Liu C (2016) Water-soluble blue fluorescence-emitting hyperbranched polysiloxanes simultaneously containing hydroxyl and primary amine groups. Macromol Rapid Commun 37:136–142

    Article  Google Scholar 

  23. Jia D, Cao L, Wang D, Guo X, Liang H, Zhao F, Gu Y, Wang D (2014) Uncovering a broad class of fluorescent amine-containing compounds by heat treatment. Chem Commun 50:11488–11491

    Article  Google Scholar 

  24. Chu C, Imae T (2009) Fluorescence investigations of oxygen-doped simple amine compared with fluorescent PAMAM dendrimer. Macromol Rapid Commun 30:89–93

    Article  Google Scholar 

  25. Wang D, Imae T, Miki M (2007) Fluorescence emission from PAMAM and PPI dendrimers. J Colloid Interface Sci 306:222–227

    Article  Google Scholar 

  26. Yan D, Gao C (2000) Hyperbranched polymers made from A2 and BB’2 type monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to divinyl sulfone. Macromolecules 33:7693–7699

    Article  Google Scholar 

  27. Chen H, Kong J (2016) Hyperbranched polymers from A2 + B3 strategy: recent advances in description and control of fine topology. Polym Chem 7:3643–3663

    Article  Google Scholar 

  28. Zhao E, Lam JWY, Meng L, Hong Y, Deng H, Bai G, Huang X, Hao J, Tang BZ (2015) Poly[(maleic anhydride)-alt-(vinyl acetate)]: a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect. Macromolecules 48:64–71

    Article  Google Scholar 

  29. Du Y, Yan H, Huang W, Chai F, Niu S (2017) Unanticipated strong blue photoluminescence from fully biobased aliphatic hyperbranched polyesters. ACS Sustain Chem Eng 5:6139–6147

    Article  Google Scholar 

  30. Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang BZ, Zhang Y, Yuan WZ (2018) Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromol 19:2014–2022

    Article  Google Scholar 

  31. Gong YY, Tan YQ, Mei J, Zhang YR, Yuan WZ, Zhang YM, Sun JZ, Tang BZ (2013) Room temperature phosphorescence from natural products: crystallization matters. Sci Chin Chem 56:1178–1182

    Article  Google Scholar 

  32. Chen X, Luo W, Ma H, Peng Q, Yuan WZ, Zhang Y (2018) Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci Chin Chem 61:351–359

    Article  Google Scholar 

  33. Tang L, Ji R, Li X, Teng KS, Lau SP (2013) Energy-level structure of nitrogen-doped graphene quantum dots. J Mater Chem C 1:4908–4915

    Article  Google Scholar 

  34. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386

    Article  Google Scholar 

  35. Aragay G, Pons J, Merkoçi A (2011) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 111:3433–3458

    Article  Google Scholar 

  36. Liu Z, He W, Guo Z (2013) Metal coordination in photoluminescent sensing. Chem Soc Rev 42:1568–1600

    Article  Google Scholar 

  37. Ehlers AW, Dapprich S, Vyboishchikov SF, Frenking G (1996) Structure and bonding of the transition-metal carbonyl complexes M(CO)5L (M = Cr, Mo, W) and M(CO)3L (M = Ni, Pd, Pt; L = CO, SiO, CS, N2, NO+, CN, NC, HCCH, CCH2, CH2, CF2, H2)1. Organometallics 15:105–117

    Article  Google Scholar 

  38. Li NC, Manning RA (1955) Some metal complexes of sulfur-containing amino acids. J Am Chem Soc 77:5225–5228

    Article  Google Scholar 

  39. Shindo H, Brown TL (1965) Infrared spectra of complexes of l-cysteine and related compounds with zinc(II), cadmium(II), mercury(II), and lead(II). J Am Chem Soc 87:1904–1909

    Article  Google Scholar 

  40. Zhou Y, Yoon J (2012) Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev 41:52–67

    Article  Google Scholar 

  41. Zhou L, Lin Y, Huang Z, Ren J, Qu X (2011) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg 2 + and biothiols in complex matrices. Chem Commun 48:1147–1149

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No.51773120), the Natural Science Foundation of Guangdong (Grant Nos. 2014A030313559, 2016A030313050, 2017A030310045), the National Natural Science Foundation of Guangdong Province for Vertical Coordination Project (No. 201642), the Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A) the Science and Technology Project of Shenzhen City (Grant Nos. JCYJ20170412105034748, CYZZ20150827160341635, and ZDSYS201507141105130), and the Top Talent Launch Scientific Research Projects of Shenzhen (827-000133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaojun Chen or Xiaohui Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Dai, W., Huang, J. et al. Construction of unconventional fluorescent poly(amino ester) polyols as sensing platform for label-free detection of Fe3+ ions and l-cysteine. J Mater Sci 53, 15717–15725 (2018). https://doi.org/10.1007/s10853-018-2716-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2716-3

Keywords

Navigation