Skip to main content
Log in

Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A magnetic Cu/CuFe2O4 nanocomposite was synthesized by a facile one-pot solvothermal method and characterized as an excellent Fenton-like catalyst for methylene blue (MB) degradation. The content of zero-valent copper (Cu0) in Cu/CuFe2O4 composite could be simply controlled by changing the dosage of sodium acetate in the synthetic process, and the Fenton-like catalytic performance of Cu/CuFe2O4 composite enhanced with increasing the Cu0 content. In the presence of H2O2 (15 mM), the as-synthesized 3-Cu/CuFe2O4 nanocomposite could remove 99% of MB (50 mg/L) after only 4 min at pH 2.50, greatly higher than that of pure CuFe2O4 and Cu0 under the same condition. The enhancement activity of Cu/CuFe2O4 nanocomposite was due to the synergistic effect between Cu0 and CuFe2O4. The radical capture experiments and coumarin fluorescent probe technique confirmed that MB was degraded mainly by the attack of OH· radicals in Cu/CuFe2O4–H2O2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Scheme 2
Figure 13

Similar content being viewed by others

References

  1. Ge M, Zhu N, Zhao YP, Li J, Liu L (2012) Sunlight-assisted degradation of dye pollutants in Ag3PO4 suspension. Ind Eng Chem Res 51:5167–5173

    Article  Google Scholar 

  2. Wiedmer D, Sagstuen E, Welch K, Haugen HJ, Tiainen H (2016) Oxidative power of aqueous non-irradiated TiO2–H2O2 suspensions: methylene blue degradation and the role of reactive oxygen species. Appl Catal B 198:9–15

    Article  Google Scholar 

  3. de Matos JB, Cardoso MJEM, Barcia OE, de Oliveira GCG, D’Elia E (2010) Study of oxygen reduction on copper applied to the peroxidase-mediated oxidation of methylene blue. J Mater Sci 45:1677–1682. https://doi.org/10.1007/s10853-009-4151-y

    Article  Google Scholar 

  4. Lyu HH, Gao B, He F, Zimmermane AR, Ding C, Tang JC, Crittenden JC (2018) Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chem Eng J 335:110–119

    Article  Google Scholar 

  5. Selim MM, EL-Mekkawi DM, Ibrahim FA (2018) Innovative synthesis of black zeolites-based kaolin and their adsorption behavior in the removal of methylene blue from water. J Mater Sci 53:3323–3331. https://doi.org/10.1007/s10853-017-1744-8

    Article  Google Scholar 

  6. Shi L, Xu CL, Sun X, Zhang H, Liu ZX, Qu XF, Du FL (2018) Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation. J Mater Sci 53:11329–11342. https://doi.org/10.1007/s10853-018-2442-x

    Article  Google Scholar 

  7. Valdés H, Tardón RF, Zaror CA (2012) Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters. Chem Eng J 211–212:388–395

    Article  Google Scholar 

  8. Moncayo-Lasso A, Sanabria J, Pulgarin C, Benítez N (2009) Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Chemosphere 77:296–300

    Article  Google Scholar 

  9. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577

    Article  Google Scholar 

  10. Sahoo B, Sahu SK, Nayak S, Dhara D, Pramanik P (2012) Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal Sci Technol 2:1367–1374

    Article  Google Scholar 

  11. Lyu L, Zhang LL, Wang QY, Nie YL, Hu C (2015) Enhanced Fenton catalytic efficiency of γ-Cu-Al2O3 by σ-Cu2+-ligand complexes from aromatic pollutant degradation. Environ Sci Technol 49:8639–8647

    Article  Google Scholar 

  12. Yoo SH, Jang D, Joh HI, Lee S (2017) Iron oxide/porous carbon as a heterogeneous Fenton catalyst for fast decomposition of hydrogen peroxide and efficient removal of methylene blue. J Mater Chem A 5:748–755

    Article  Google Scholar 

  13. Li H, Shang J, Yang ZP, Shen WJ, Ai ZH, Zhang LZ (2017) Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity. Environ Sci Technol 51:5685–5694

    Article  Google Scholar 

  14. Espinosa JC, Navalón S, Álvaro M, García H (2016) Copper nanoparticles supported on diamond nanoparticles as a cost-effective and efficient catalyst for natural sunlight assisted Fenton reaction. Catal Sci Technol 6:7077–7085

    Article  Google Scholar 

  15. Zhang SX, Zhao XL, Niu HY, Shi YL, Cai YQ, Jiang GB (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167:560–566

    Article  Google Scholar 

  16. Qian XF, Ren M, Zhu Y, Yue DT, Han Y, Jia JP, Zhao YX (2017) Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environ Sci Technol 51:3993–4000

    Article  Google Scholar 

  17. Zhang GK, Gao YY, Zhang YL, Guo YD (2010) Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environ Sci Technol 44:6384–6389

    Article  Google Scholar 

  18. Gonzalez-Olmos R, Martin MJ, Georgi A, Kopinke FD, Oller I, Malato S (2012) Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl Catal B 125:51–58

    Article  Google Scholar 

  19. Wang YB, Zhao HY, Li MF, Fan JQ, Zhao GH (2014) Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B 147:534–545

    Article  Google Scholar 

  20. Feng Y, Liao CZ, Shih K (2016) Copper-promoted circumneutral activation of H2O2 by magnetic CuFe2O4 spinel nanoparticles: mechanism, stoichiometric efficiency, and pathway of degrading sulfanilamide. Chemosphere 154:573–582

    Article  Google Scholar 

  21. Hamdan N, Abu Haija M, Banat F, Eskhan A (2017) Heterogeneous catalytic degradation of phenol by a Fenton-type reaction using copper ferrites (CuFe2O4). Desalin Water Treat 69:268–283

    Article  Google Scholar 

  22. Reddy DHKR, Yun YS (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coordin Chem Rev 315:90–111

    Article  Google Scholar 

  23. Zhao YT, He GY, Dai W, Chen HQ (2014) High catalytic activity in the phenol hydroxylation of magnetically separable CuFe2O4-reduced graphene oxide. Ind Eng Chem Res 53:12566–12574

    Article  Google Scholar 

  24. Qin QD, Liu YH, Li XC, Sun T, Xu Y (2018) Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O4. RSC Adv 8:1071–1077

    Article  Google Scholar 

  25. Wang YB, Zhao HY, Zhao GH (2015) Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants. Appl Catal B 164:396–406

    Article  Google Scholar 

  26. Zhou P, Zhang J, Zhang YL, Liang J, Liu Y, Liu B, Zhang W (2016) Activation of hydrogen peroxide during the corrosion of nanoscale zero valent copper in acidic solution. J Mol Catal A Chem 424:115–120

    Article  Google Scholar 

  27. Ma XY, Cheng YQ, Ge YJ, Wu HD, Li QS, Gao NY, Deng J (2018) Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason Sonochem 40:763–772

    Article  Google Scholar 

  28. Wen G, Wang SJ, Ma J, Huang TL, Liu ZQ, Zhao L, Xu JL (2014) Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition. J Hazard Mater 275:193–199

    Article  Google Scholar 

  29. Li KY, Zhao YQ, Janik MJ, Song CS, Guo XW (2017) Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts. Appl Surf Sci 396:1383–1392

    Article  Google Scholar 

  30. Dong YC, Chui YS, Ma RG, Cao CW, Cheng H, Li YY, Zapien JA (2014) One-pot scalable synthesis of Cu-CuFe2O4/graphene composites as anode materials for lithium-ion batteries with enhanced lithium storage properties. J Mater Chem A 2:13892–13897

    Article  Google Scholar 

  31. Sellers RM (1980) Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 105:950–954

    Article  Google Scholar 

  32. Zhang XY, Ding YB, Tang HQ, Han XY, Zhu LH, Wang N (2014) Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: efficiency, stability and mechanism. Chem Eng J 236:251–262

    Article  Google Scholar 

  33. Krishnakumar B, Imae T, Miras J, Esquena J (2014) Synthesis and azo dye photodegradation activity of ZrS2–ZnO nano-composites. Sep Purif Technol 132:281–288

    Article  Google Scholar 

  34. Zhao QH, Liu XY, Xing YX, Liu ZL, Du CF (2016) Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl. J Mater Sci 52:2117–2130. https://doi.org/10.1007/s10853-016-0499-y

    Article  Google Scholar 

  35. Zhang YT, Liu C, Xu BB, Qi F, Chu W (2016) Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: combination of adsorption and catalysis oxidation. Appl Catal B 199:447–457

    Article  Google Scholar 

  36. Xing ST, Zhou ZC, Ma ZC, Wu YS (2011) Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Appl Catal B 3–4:386–392

    Article  Google Scholar 

  37. Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018

    Article  Google Scholar 

  38. Xu LJ, Wang JL (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46:10145–10153

    Article  Google Scholar 

  39. Ge M, Li YF, Liu L, Zhou Z, Chen W (2011) Bi2O3–Bi2WO6 composite microspheres: hydrothermal synthesis and photocatalytic performances. J Phys Chem C 115:5220–5225

    Article  Google Scholar 

  40. Yao HB, Xie Y, Jing Y, Wang YJ, Luo GS (2017) Controllable preparation and catalytic performance of heterogeneous Fenton-like α-Fe2O3/crystalline glass microsphere catalysts. Ind Eng Chem Res 56:13751–13759

    Article  Google Scholar 

  41. Wang Y, Li J, Sun JY, Wang YB, Zhao X (2017) Electrospun flexible self-standing Cu-Al2O3 fibrous membranes as Fenton catalysts for bisphenol A degradation. J Mater Chem A 5:19151–19158

    Article  Google Scholar 

  42. Pham VL, Kim DG, Ko SO (2018) Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate. Chemosphere 191:639–650

    Article  Google Scholar 

  43. Zhang XL, Feng MB, Qu RJ, Liu H, Wang LS, Wang ZY (2016) Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. Chem Eng J 301:1–11

    Article  Google Scholar 

  44. Qi CD, Liu XT, Ma J, Lin CY, Li XW, Zhang HJ (2016) Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants. Chemosphere 151:280–288

    Article  Google Scholar 

  45. Jin H, Tian XK, Nie YL, Zhou ZX, Yang C, Li Y, Lu LQ (2017) Oxygen vacancy promoted heterogeneous Fenton-like degradation of ofloxacin at pH 3.2–9.0 by Cu substituted magnetic Fe3O4@FeOOH nanocomposite. Environ Sci Technol 51:12699–12706

    Article  Google Scholar 

  46. Masarwa M, Cohen H, Meyerstein D, Hickman DL, Bakac A, Espenson JH (1988) Reactions of low-valent transition-metal complexes with hydrogen peroxide. Are they “Fenton-like” or not? 1. The case of Cu +aq and Cr 2+aq . J Am Chem Soc 110:4293–4297

    Article  Google Scholar 

  47. Costa RCC, Moura FCC, Ardisson JD, Fabris JD, Lago RM (2008) Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal B 83:131–139

    Article  Google Scholar 

  48. Yao YJ, Lu F, Zhu YP, Wei FY, Liu XT, Lian C, Wang SB (2015) Magnetic core–shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II. J Hazard Mater 297:224–233

    Article  Google Scholar 

  49. Zhang LL, Nie YL, Hu C, Qu JH (2012) Enhanced Fenton degradation of Rhodamine B over nanoscaled Cu-doped LaTiO3 perovskite. Appl Catal B 125:418–424

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Youth Foundation of Hebei Education Department (QN2017115) and the National Natural Science Foundation of China (51504079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Lyu, J. & Ge, M. Synthesis of magnetic Cu/CuFe2O4 nanocomposite as a highly efficient Fenton-like catalyst for methylene blue degradation. J Mater Sci 53, 15081–15095 (2018). https://doi.org/10.1007/s10853-018-2699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2699-0

Keywords

Navigation