Skip to main content
Log in

Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a stable and recyclable Pd catalyst supported on N-containing silane coupling agent modified silica hollow microspheres with macroporous shells (Pd/N-SHMs) was successfully prepared and used for the selective hydrogenation of nitrile-butadiene rubber (NBR) with enhanced catalytic performance. The results showed that Pd/N-SHMs possessed small-sized and well-dispersed Pd nanoparticles (NPs) and the macroporous shells were beneficial for the diffusion of macromolecular NBR, and thus with such a catalyst, the reaction could occur under mild conditions and high hydrogenation degree (96.6%) with 100% selectivity to C=C was obtained. The prepared catalyst could be easily recycled and reused with a high efficiency. More importantly, because of the strong coordination between Pd and diamine ligands, Pd NPs could be anchored steadily over the support and only 5.0 ppm Pd residues was detected in products. This reaction was considered as pseudo-first order at high H2 pressures, and the reaction activation energy was calculated to be as low as 18.1 kJ/mol. Our contribution is to provide an efficient and recyclable supported Pd catalyst, which may promote the development of heterogeneous catalytic systems for unsaturated macromolecular hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Han KY, Zuo HR, Zhu ZW, Cao GP, Lu C, Wang YH (2013) High performance of palladium nanoparticles supported on carbon nanotubes for the hydrogenation of commercial polystyrene. Ind Eng Chem Res 52:17750–17759

    Article  Google Scholar 

  2. Wang H, Yang L, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: a review. Polym Rev 53:192–239

    Article  Google Scholar 

  3. Smitthipong W, Gadiou R, Vidal L, Wagner P, Nardin M (2008) 3D Raman images of rubber blends (IR-HNBR). Vib Spectrosc 46:8–13

    Article  Google Scholar 

  4. Maheshwari S, Tsapatsis M, Bates FS (2007) Synthesis and thermodynamic properties of poly (cyclohexylethylene-b-dimethylsiloxane-b-cyclohexylethylene). Macromolecules 40:6638–6646

    Article  Google Scholar 

  5. Zhao J, Yang R, Iervolino R, Barbera S (2015) Investigation of crosslinking in the thermooxidative aging of nitrile-butadiene rubber. J Appl Polym Sci 132:41319–41323

    Google Scholar 

  6. Bieliński DM, Ślusarski L, Włochowicz A, Ślusarczyk C (1998) Structure and mechanical properties of nitrile rubbers modified with iodine. J Appl Polym Sci 67:501–512

    Article  Google Scholar 

  7. Severe G, White JL (2005) Dynamically vulcanized blends of oil-resistant elastomers with HNBR. J Appl Polym Sci 95:2–5

    Article  Google Scholar 

  8. Gonzalez L, Rodriguez A, Marcos-Fernández A, Valentín J, Fernández-Torres A (2007) Effect of network heterogeneities on the physical properties of nitrile rubbers cured with dicumyl peroxide. J Appl Polym Sci 103:3377–3382

    Article  Google Scholar 

  9. Dong LB, Turgman-Cohen S, Roberts GW, Kiserow DJ (2010) Effect of polymer size on heterogeneous catalytic polystyrene hydrogenation. Ind Eng Chem Res 49:11280–11286

    Article  Google Scholar 

  10. Mao TF, Rempel GL (1998) Catalytic hydrogenation of nitrile-butadiene copolymers by cationic rhodium complexes. J Mol Catal A Chem 135:121–132

    Article  Google Scholar 

  11. McManus NT, Rempel GL (2008) Improvements in the hydrogenation of nitrile rubber using Wilkinson’s catalyst. Rubber Chem Technol 81:227–243

    Article  Google Scholar 

  12. Ai C, Gong G, Zhao X, Liu P (2017) Selectively catalytic hydrogenation of nitrile-butadiene rubber using Grubbs II catalyst. Macromol Res 25:461–465

    Article  Google Scholar 

  13. Zhou W, Yi J, Lin J, Fang S, Peng X (2017) Preparation of facile separable homogeneous Rhodium catalyst and its application for the catalytic hydrogenation of nitrile butadiene rubber and styrene-butadiene rubber. Res Chem Intermed 43:3651–3662

    Article  Google Scholar 

  14. Yang L, Pan Q, Rempel GL (2012) Recovery of Wilkinson’s catalyst from polymer based matrix using carbon dioxide expanded methanol. J Supercrit Fluid 68:104–112

    Article  Google Scholar 

  15. Yang L, Pan Q, Rempel GL (2013) Development of a green separation technique for recovery of Wilkinson’s catalysts from bulk hydrogenated nitrile butadiene rubber. Catal Today 207:153–161

    Article  Google Scholar 

  16. Kubo Y, Ohura K (1982) Process for hydrogenation of conjugated diene polymers. US Patents 4337329

  17. Kubo Y, Oura K (1984) Process for hydrogenation of conjugated diene polymers. US Patents 4452951

  18. Cao P, Ni Y, Zou R, Zhang L, Yue D (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. Rsc Adv 5:3417–3424

    Article  Google Scholar 

  19. Zou R, Li C, Zhang L, Yue D (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal Commun 81:4–9

    Article  Google Scholar 

  20. Xu D, Carbonell RG, Kiserow DJ, Roberts GW (2003) Kinetic and transport processes in the heterogeneous catalytic hydrogenation of polystyrene. Ind Eng Chem Res 42:3509–3515

    Article  Google Scholar 

  21. Gehlsen MD, Bates FS (1993) Heterogeneous catalytic hydrogenation of polystyrene: thermodynamics of poly (vinylcyclohexane)-containing diblock copolymers. Macromolecules 26:4122–4127

    Article  Google Scholar 

  22. Ness JS, Brodil JC, Bates FS, Hahn SF, Hucul DA, Hillmyer MA (2002) Molecular weight effects in the hydrogenation of model polystyrenes using platinum supported on wide-pore silica. Macromolecules 35:602–609

    Article  Google Scholar 

  23. Li L, Ding J, Xue J (2009) Macroporous silica hollow microspheres as nanoparticle collectors. Chem Mater 21:3629–3637

    Article  Google Scholar 

  24. Fujiwara M, Shiokawa K, Araki M, Nakao M, Sakakura I, Nakahara Y (2011) Preparation of silica thin films with macropore holes from sodium silicate and polymethacrylate: an approach to formation mechanism of diatomaceous earth like silica hollow particles. Chem Eng J 172:1103–1110

    Article  Google Scholar 

  25. Pan D, Shi G, Zhang T, Yuan P, Fan Y, Bao X (2013) New understanding and controllable synthesis of silica hollow microspheres with size-tunable penetrating macroporous shells as a superior support for polystyrene hydrogenation catalysts. J Mater Chem A 1:9597–9602

    Article  Google Scholar 

  26. Ai C, Gong G, Zhao X, Liu P (2017) Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber. J Taiwan Inst Chem E 77:250–256

    Article  Google Scholar 

  27. Ai C, Gong G, Zhao X, Liu P (2017) Ureido-modified macroporous hollow silica microspheres for recovery of Wilkinson’s catalyst in hydrogenated nitrile butadiene rubber. Powder Technol 318:501–506

    Article  Google Scholar 

  28. Kawaguchi M, Anada S, Nishikawa K, Kurata N (1992) Effect of surface geometry on polymer adsorption. 2 Individual adsorption and competitive adsorption. Macromolecules 25:1588–1593

    Article  Google Scholar 

  29. Kawaguchi M, Sakata Y, Anada S, Kato T, Takahashi A (1994) Kinetics of competitive adsorption of polystyrene chains at a porous silica surface. Langmuir 10:538–541

    Article  Google Scholar 

  30. Shirai M, Suzuki N, Nishiyama Y, Torii K, Arai M (1999) Size-selective hydrogenation of NBR polymers catalyzed by pore-size controlled smectites loaded with palladium. Appl Catal A 177:219–225

    Article  Google Scholar 

  31. Shirai M, Torii K, Arai M (2000) Hydrogenation of acrylonitrile-butadiene rubbers with palladium loaded mesopore-size controlled clay materials. Stud Surf Sci Catal 130:2105–2110

    Article  Google Scholar 

  32. Bhattacharjee S, Bhowmick AK, Avasthi B (1991) High-pressure hydrogenation of nitrile rubber: thermodynamics and kinetics. Ind Eng Chem Res 30:1086–1092

    Article  Google Scholar 

  33. Singha N, Bhattacharjee S, Sivaram S (1997) Hydrogenation of diene elastomers, their properties and applications: a critical review. Rubber Chem Technol 70:309–367

    Article  Google Scholar 

  34. Paryjczak T, Jó’zwiak K (1975) Pulse technique for the chromatographic determination of metal dispersions in palladium catalysts. J Chromatogr A 111:443–447

    Article  Google Scholar 

  35. Feng JT, Wang HY, Evans DG, Duan X, Li DQ (2010) Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts. Appl Catal A 382:240–245

    Article  Google Scholar 

  36. He YF, Feng JT, Du YY, Li DQ (2012) Controllable synthesis and acetylene hydrogenation performance of supported Pd nanowire and cuboctahedron catalysts. ACS Catal 2:1703–1710

    Article  Google Scholar 

  37. Li H, Xu Y, Yang H, Zhang F, Li H (2009) Ni-B amorphous alloy deposited on an aminopropyl and methyl co-functionalized SBA-15 as a highly active catalyst for chloronitrobenzene hydrogenation. J Mol Catal A: Chem 307:105–114

    Article  Google Scholar 

  38. Yu T, Yang R, Xia S, Li G, Hu C (2014) Direct amination of benzene to aniline with H2O2 and NH3·H2O over Cu/SiO2 catalyst. Catal Sci Technol 4:3159–3167

    Article  Google Scholar 

  39. Chen Y, Guo Z, Chen T, Yang Y (2010) Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. J Catal 275:11–24

    Article  Google Scholar 

  40. Maria Chong A, Zhao X (2003) Functionalization of SBA-15 with APTES and characterization of functionalized materials. J Phys Chem B 107:12650–12657

    Article  Google Scholar 

  41. Demel J, Lamač M, Čejka J, Štěpnička P (2009) Palladium Catalysts Supported on Mesoporous Molecular Sieves Bearing Nitrogen Donor Groups: preparation and Use in Heck and Suzuki C=C Bond-Forming Reactions. Chemsuschem 2:442–451

    Article  Google Scholar 

  42. Wang X, Lin KS, Chan JC, Cheng S (2005) Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J Phys Chem B 109:1763–1769

    Article  Google Scholar 

  43. Li Y, Liu H, Ma L, He D (2016) Influence of Pd precursors and Cl addition on performance of Pd-Re catalysts in glycerol hydrogenolysis to propanediols. Appl Catal A 522:13–20

    Article  Google Scholar 

  44. Yan Y, Chen Y, Jia X, Yang Y (2014) Palladium nanoparticles supported on organosilane-functionalized carbon nanotube for solvent-free aerobic oxidation of benzyl alcohol. Appl Catal B 156–157:385–397

    Article  Google Scholar 

  45. Hou Z, Theyssen N, Brinkmann A et al (2008) Supported palladium nanoparticles on hybrid mesoporous silica: structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide. J Catal 258:315–323

    Article  Google Scholar 

  46. Radkevich V, Senko T, Wilson K, Grishenko L, Zaderko A, Diyuk V (2008) The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation. Appl Catal A 335:241–251

    Article  Google Scholar 

  47. Ko YG, Lee HJ, Oh HC, Choi US (2013) Amines immobilized double-walled silica nanotubes for CO2 capture. J Hazard Mater 250–251:53–60

    Article  Google Scholar 

  48. Chen T, Li D, Hong J, Xiong C (2015) High-performance Pd nanoalloy on functionalized activated carbon for the hydrogenation of nitroaromatic compounds. Chem Eng J 259:161–169

    Article  Google Scholar 

  49. Bhattacharjee S, Bhowmick AK, Avasthi B (1992) Preparation of hydrogenated nitrile rubber using palladium acetate catalyst: its characterization and kinetics. J Polym Sci Part A: Polym Chem 30:471–484

    Article  Google Scholar 

  50. Mohammadi N, Rempel G (1987) Homogeneous selective catalytic hydrogenation of C=C in acrylonitrile-butadiene copolymer. Macromolecules 20:2362–2368

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant 21576290, 21776048), Fujian Province Natural Science Funds for Distinguished Young Scholar (2018J06002) and Fujian young top-notch innovative talent project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ma, L., Cheng, T. et al. Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR. J Mater Sci 53, 15064–15080 (2018). https://doi.org/10.1007/s10853-018-2698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2698-1

Keywords

Navigation