Skip to main content
Log in

Oxidation of ZrB2 and its composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation behavior and oxidation mechanisms of monolithic ZrB2 and particulate-ZrB2 matrix composites were reviewed. Dispersion of SiC particles into ZrB2 was found to be an effective way to prevent extensive oxidation. However, the formation of a SiC-depleted layer can become a critical problem because it can lead to spallation and delamination of the protective surface layer. The addition of ZrC in conjunction with rapid heating to temperatures higher than 2000 °C effectively reduced the porosity of the SiC-depleted layer. The formation of a dense surface layer was attributed to large volumetric expansion during the conversion from ZrC to ZrO2. The effect of the ZrC addition depended on the temperature, heating rate, and composition. This review showed that material design for specific applications is required for high-temperature applications to maximize the oxidation resistance of ZSZ composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW (2004) Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951–5957. https://doi.org/10.1023/B:JMSC.0000041691.41116.bf

    Article  CAS  Google Scholar 

  2. Fahrenholtz WG, Hilmas GE (2017) Ultra-high temperature ceramics: materials for extreme environments. Scripta Mater 129:94–99

    Article  CAS  Google Scholar 

  3. Neuman EW, Hilmas GE, Fahrenholtz WG (2016) Processing, microstructure, and mechanical properties of large-grained zirconium diboride ceramics. Mater Sci Eng, A 670:196–204

    Article  CAS  Google Scholar 

  4. Neuman EW, Hilmas GE, Fahrenholtz WG (2015) Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C. J Eur Ceram Soc 35:463–476

    Article  CAS  Google Scholar 

  5. Neuman EW, Hilmas GE, Fahrenholtz WG (2013) Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J Eur Ceram Soc 33:2889–2899

    Article  CAS  Google Scholar 

  6. Neuman EW, Hilmas GE, Fahrenholtz WG (2012) Strength of zirconium diboride to 2300 °C. J Am Ceram Soc 96:47–50

    Article  CAS  Google Scholar 

  7. Watts J, Hilmas G, Fahrenholtz WG (2011) Mechanical characterization of ZrB2–SiC composites with varying SiC particle sizes. J Am Ceram Soc 94:4410–4418

    Article  CAS  Google Scholar 

  8. Watts J, Hilmas G, Fahrenholtz WG et al (2011) Measurement of thermal residual stresses in ZrB2–SiC composites. J Eur Ceram Soc 31:1811–1820

    Article  CAS  Google Scholar 

  9. Zhang SC, Hilmas GE, Fahrenholtz WG (2011) Mechanical properties of sintered ZrB2–SiC ceramics. J Eur Ceram Soc 31:893–901

    Article  CAS  Google Scholar 

  10. Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J Am Ceram Soc 91:3530–3535

    Article  CAS  Google Scholar 

  11. Zhang SC, Hilmas GE, Fahrenholtz WG (2007) Pressureless sintering of ZrB2–SiC ceramics. J Am Ceram Soc 91:26–32

    Article  CAS  Google Scholar 

  12. Zhu S, Fahrenholtz WG, Hilmas GE, Zhang SC (2007) Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J Am Ceram Soc 90:3660–3663

    Article  CAS  Google Scholar 

  13. Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. J Mater Sci 42:2735–2744. https://doi.org/10.1007/s10853-006-1274-2

    Article  CAS  Google Scholar 

  14. Fahrenholtz WG (2007) Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region. J Am Ceram Soc 90:143–148

    Article  CAS  Google Scholar 

  15. Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Evolution of structure during the oxidation of zirconium diboride–silicon carbide in air up to 1500 °C. J Eur Ceram Soc 27:2495–2501

    Article  CAS  Google Scholar 

  16. Rezaie A, Fahrenholtz WG, Hilmas GE (2006) Oxidation of zirconium diboride–silicon carbide at 1500 °C at a low partial pressure of oxygen. J Am Ceram Soc 89:3240–3245

    Article  CAS  Google Scholar 

  17. Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) High-strength zirconium diboride-based ceramics. J Am Ceram Soc 87:1170–1172

    Article  CAS  Google Scholar 

  18. Zhang G-J, Ni D-W, Zou J et al (2017) Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. J Eur Ceram Soc 38:371–389

    Article  CAS  Google Scholar 

  19. Tallon C, Chavara D, Gillen A et al (2013) Colloidal processing of zirconium diboride ultra-high temperature ceramics. J Am Ceram Soc 96:2374–2381

    Article  CAS  Google Scholar 

  20. Bird MW, Aune RP, Thomas AF et al (2012) Temperature-dependent mechanical and long crack behavior of zirconium diboride–silicon carbide composite. J Eur Ceram Soc 32:3453–3462

    Article  CAS  Google Scholar 

  21. Guo S, Nishimura T, Kagawa Y (2011) Preparation of zirconium diboride ceramics by reactive spark plasma sintering of zirconium hydride-boron powders. Scripta Mater 65:1018–1021

    Article  CAS  Google Scholar 

  22. Yang F, Zhang X, Han J, Du S (2008) Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics. Mater Des 29:1817–1820

    Article  CAS  Google Scholar 

  23. Ghosh D, Subhash G, Radhakrishnan R, Sudarshan TS (2008) Scratch-induced microplasticity and microcracking in zirconium diboride–silicon carbide composite. Acta Mater 56:3011–3022

    Article  CAS  Google Scholar 

  24. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) Refractory Diborides of Zirconium and Hafnium. J Am Ceram Soc 90:1347–1364

    Article  CAS  Google Scholar 

  25. Guo S-Q (2009) Densification of ZrB2-based composites and their mechanical and physical properties: a review. J Eur Ceram Soc 29:995–1011

    Article  CAS  Google Scholar 

  26. Tian W-B, Kan Y-M, Zhang G-J, Wang P-L (2008) Effect of carbon nanotubes on the properties of ZrB2–SiC ceramics. Mater Sci Eng, A 487:568–573

    Article  CAS  Google Scholar 

  27. Sim G-D, Choi YS, Lee D et al (2016) High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016K. Acta Mater 113:32–40

    Article  CAS  Google Scholar 

  28. Zhu S, Fahrenholtz WG, Hilmas GE (2007) Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. J Eur Ceram Soc 27:2077–2083

    Article  CAS  Google Scholar 

  29. Monteverde F (2005) The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corros Sci 47:2020–2033

    Article  CAS  Google Scholar 

  30. Monteverde F, Guicciardi S, Bellosi A (2003) Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater Sci Eng, A 346:310–319

    Article  Google Scholar 

  31. Lönnberg B (1988) Thermal expansion studies on the group IV–VII transition metal diborides. J Less Common Met 141:145–156

    Article  Google Scholar 

  32. Nakamura M, Shigematsu I, Kanayama K, Hirai Y (1991) Surface damage in ZrB2-based composite ceramics induced by electro-discharge machining. J Mater Sci 26:6078–6082. https://doi.org/10.1007/BF01113887.pdf

    Article  CAS  Google Scholar 

  33. Norasetthekul S, Eubank PT, Bradley WL et al (1999) Use of zirconium diboride-copper as an electrode in plasma applications. J Mater Sci 34:1261–1270. https://doi.org/10.1023/A:1004529527162

    Article  CAS  Google Scholar 

  34. Cardarelli F (2000) Materials handbook. Springer, U. K., pp 342–364

    Book  Google Scholar 

  35. Norton JT, Blumenthal H, Sindeband SJ (1949) Properties of chromium boride and sintered chromium boride. JOM 1:749–751

    Article  CAS  Google Scholar 

  36. Samsonov GV (1956) The heat formation of borides of some transition metals (in Russian). Zhur Fiz Khim 30

  37. Samsonov GV, Vinitskii IM (1976) Tyгoплaвкиe coeдинeния : cпpaвoчник (Translation in Japanese) Japan-Soviet news agency, Japan

  38. Kuriakose AK, Margrave JL (1964) The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J Electrochem Soc 111:827

    Article  CAS  Google Scholar 

  39. Kuzenkova MA, Kislyi PS (1965) The oxidation resistance of alloys of zirconium boride with molybdenum disilicide. Sov Powder Metall Met Ceram 4:841–844

    Article  Google Scholar 

  40. Gorbunov AE (1966) Carbothermic method of preparation of chromium, molybdenum, and zirconium borides. Sov Powder Metall Met Ceram 5:885–888

    Article  Google Scholar 

  41. Mattuck JBB (1966) High-Temperature Oxidation III. Zirconium and Hafnium Diborides. J Electrochem Soc 113:908–914

    Article  Google Scholar 

  42. Mattuck JBB (1967) High-temperature oxidation IV. Zirconium and hafnium carbides. J Electrochem Soc 114:1030–1033

    Article  Google Scholar 

  43. Irving RJ, Worsley IG (1968) The oxidation of titanium diboride and zirconium diboride at high temperatures. J Less Common Met 16:103–112

    Article  CAS  Google Scholar 

  44. Gropyanov VM, Bel’tyukova LM (1968) Sintering and recrystallization of ZrC-ZrB2 compacts. Sov Powder Metall Met Ceram 7:527–533

    Article  Google Scholar 

  45. Kalish D, Clougherty EV, Kreder K (1969) Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2. J Am Ceram Soc 52:30–36

    Article  CAS  Google Scholar 

  46. Kaufman L (1970) Boride composites - A new generation of nose cap and leading edge materials for reusable lifting reentry systems. Adv Space Transp Meet

  47. Medvedeva OA (1971) Technical alloys of the system ZrB2–ZrN. Sov Powder Metall Met Ceram 10:27–29

    Article  Google Scholar 

  48. Tripp WC, Graham HC (1971) Thermogravi metric Study of the Oxidation of ZrB2 in the Temperature Range of 800° to 1500 °C. J Electrochem Soc 118:1195

    Article  CAS  Google Scholar 

  49. Lavrenko VA, Yagupolskaya LN, Kuznetsova LI et al (1974) The oxidation of ZrB2, TaB2, NbB2, and W2B5 in atomic oxygen and by anodic polarization. Oxid Met 8:131–137

    Article  CAS  Google Scholar 

  50. Hinze JW (1975) The High-Temperature Oxidation Behavior of a HfB2-20 v/o SiC Composite. J Electrochem Soc 122:1249

    Article  CAS  Google Scholar 

  51. Voitovich BF, Pugach EA (1975) High-temperature oxidation of borides of the group IV metals. Sov Powder Metall Met Ceram 14:231–235

    Article  Google Scholar 

  52. Otani S, Ishizawa Y (1996) Preparation of ZrB2 single crystals by the floating zone method. J Cryst Growth 165:319–322

    Article  CAS  Google Scholar 

  53. Monteverde F, Savino R (2007) Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions. J Eur Ceram Soc 27:4797–4805

    Article  CAS  Google Scholar 

  54. Zimmermann JW, Hilmas GE, Fahrenholtz WG et al (2007) Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics. J Eur Ceram Soc 27:2729–2736

    Article  CAS  Google Scholar 

  55. Tu R, Hirayama H, Goto T (2008) Preparation of ZrB2–SiC composites by arc melting and their properties. J Ceram Soc Japan 116:431–435

    Article  CAS  Google Scholar 

  56. Guo S-Q, Nishimura T, Mizuguchi T, Kagawa Y (2008) Mechanical properties of hot-pressed ZrB2–MoSi2–SiC composites. J Eur Ceram Soc 28:1891–1898

    Article  CAS  Google Scholar 

  57. Guo S-Q, Kagawa Y, Nishimura T et al (2008) Mechanical and physical behavior of spark plasma sintered ZrC–ZrB2–SiC composites. J Eur Ceram Soc 28:1279–1285

    Article  CAS  Google Scholar 

  58. Licheri R, Orrù R, Musa C, Cao G (2008) Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2–ZrC–SiC composites. Mater Lett 62:432–435

    Article  CAS  Google Scholar 

  59. Guo S-Q, Kagawa Y, Nishimura T, Tanaka H (2008) Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scripta Mater 58:579–582

    Article  CAS  Google Scholar 

  60. Yang F, Zhang X, Han J, Du S (2008) Mechanical properties of short carbon fiber reinforced ZrB2–SiC ceramic matrix composites. Mater Lett 62:2925–2927

    Article  CAS  Google Scholar 

  61. Guo S-Q, Yang J-M, Tanaka H, Kagawa Y (2008) Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles. Compos Sci Technol 68:3033–3040

    Article  CAS  Google Scholar 

  62. Guo S-Q, Kagawa Y, Nishimura T (2009) Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. J Eur Ceram Soc 29:787–794

    Article  CAS  Google Scholar 

  63. Meng S, Chen H, Hu J, Wang Z (2011) Radiative properties characterization of ZrB2–SiC-based ultrahigh temperature ceramic at high temperature. Mater Des 32:377–381

    Article  CAS  Google Scholar 

  64. Meng S, Qi F, Chen H et al (2011) The repeated thermal shock behaviors of a ZrB2–SiC composite heated by electric resistance method. Int J Refract Met Hard Mater 29:44–48

    Article  CAS  Google Scholar 

  65. Talmy IG, Zaykoski JA, Opeka MM, Smith AH (2011) Properties of ceramics in the system ZrB2–Ta5Si3. J Mater Res 21:2593–2599

    Article  Google Scholar 

  66. Natividad SL, Marotto VR, Walker LS et al (2011) Tape casting thin, continuous, homogenous, and flexible tapes of ZrB2. J Am Ceram Soc 94:2749–2753

    Article  CAS  Google Scholar 

  67. Silvestroni L, Sciti D (2011) Oxidation of ZrB2 ceramics containing sic as particles, whiskers, or short fibers. J Am Ceram Soc 94:2796–2799

    Article  CAS  Google Scholar 

  68. Akin I, Goller G (2012) Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites. J Ceram Soc Japan 120:143–149

    Article  CAS  Google Scholar 

  69. Jayaseelan DD, Zapata-Solvas E, Brown P, Lee WE (2012) In situ formation of oxidation resistant refractory coatings on SiC-Reinforced ZrB2 ultra high temperature ceramics. J Am Ceram Soc 95:1247–1254

    Article  CAS  Google Scholar 

  70. Gupta N, Mukhopadhyay A, Pavani K, Basu B (2012) Spark plasma sintering of novel ZrB2–SiC–TiSi2 composites with better mechanical properties. Mater Sci Eng, A 534:111–118

    Article  CAS  Google Scholar 

  71. Hu P, Gui K, Yang Y et al (2013) Effect of SiC Content on the Ablation and Oxidation Behavior of ZrB2-based ultra high temperature ceramic composites. Mater 6:1730–1744

    Article  CAS  Google Scholar 

  72. Guo S (2014) Densification, microstructure, elastic and mechanical properties of reactive hot-pressed ZrB2–ZrC–Zr cermets. J Eur Ceram Soc 34:621–632

    Article  CAS  Google Scholar 

  73. Asl MS, Kakroudi MG (2014) Fractographical assessment of densification mechanisms in hot pressed ZrB2–SiC composites. Ceram Intl 40:15273–15281

    Article  CAS  Google Scholar 

  74. Gonzalez-Julian J, Cedillos-Barraza O, Döring S et al (2014) Enhanced oxidation resistance of ZrB2/SiC composite through in situ reaction of gadolinium oxide in patterned surface cavities. J Eur Ceram Soc 34:4157–4166

    Article  CAS  Google Scholar 

  75. Asl MS, Kakroudi MG, Noori S (2015) Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. J Alloys Compd 619:481–487

    Article  CAS  Google Scholar 

  76. Asl MS, Nayebi B, Ahmadi Z et al (2015) Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites. Mater Charact 102:137–145

    Article  CAS  Google Scholar 

  77. Vafa NP, Asl MS, Zamharir MJ, Kakroudi MG (2015) Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part I_ Densification behavior. Ceram Intl 41:8388–8396

    Article  CAS  Google Scholar 

  78. Zamharir MJ, Asl MS, Kakroudi MG et al (2015) Significance of hot pressing parameters and reinforcement size on sinterability and mechanical properties of ZrB2–25vol% SiC UHTCs. Ceram Intl 41:9628–9636

    Article  CAS  Google Scholar 

  79. Rodríguez-Sánchez J, Sánchez-González E, Guiberteau F, Ortiz AL (2015) Contact-mechanical properties at intermediate temperatures of ZrB2 ultra-high-temperature ceramics pressureless sintered with Mo, Ta, or Zr disilicides. J Eur Ceram Soc 35:3179–3185

    Article  CAS  Google Scholar 

  80. Li Y, Li Q, Wang Z, Lv L (2016) Oxidation behavior of laminated ZrB2–SiC composites and monolithic ZrB2–SiC composites. Ceram Intl 42:2063–2069

    Article  CAS  Google Scholar 

  81. Chamberlain AL, Fahrenholtz WG, Hilmas GE (2009) Reactive hot pressing of zirconium diboride. J Eur Ceram Soc 29:3401–3408

    Article  CAS  Google Scholar 

  82. Wang H, Wang C-A, Yao X, Fang D (2007) Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering. J Am Ceram Soc 90:1992–1997

    Article  CAS  Google Scholar 

  83. Monteverde F, Scatteia L (2007) Resistance to thermal shock and to oxidation of metal diborides SiC ceramics for aerospace application. J Am Ceram Soc 90:1130–1138

    Article  CAS  Google Scholar 

  84. Opeka MM, Talmy IG, Zaykoski JA (2004) Oxidation-based materials selection for 2000 °C hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 39:5887–5904. https://doi.org/10.1023/B:JMSC.0000041686.21788.77

    Article  CAS  Google Scholar 

  85. Voitovich RF, Pugach EA, Men’shikova LA (1967) High-temperature oxidation of zirconium diboride. Powder Metall Met Ceram 6:462–465

    Google Scholar 

  86. Fahrenholtz WG (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88:3509–3512

    Article  CAS  Google Scholar 

  87. Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2007) A model for the oxidation of ZrB2, HfB2 and TiB2. Acta Mater 55:5999–6010

    Article  CAS  Google Scholar 

  88. Grigoriev ON, Galanov BA, Lavrenko VA et al (2010) Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen. J Eur Ceram Soc 30:2397–2405

    Article  CAS  Google Scholar 

  89. Silvestroni L, Meriggi G, Sciti D (2014) Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corros Sci 83:281–291

    Article  CAS  Google Scholar 

  90. Sha JJ, Li J, Wang SH et al (2015) Toughening effect of short carbon fibers in the ZrB2–ZrSi2 ceramic composites. Mater Des 75:160–165

    Article  CAS  Google Scholar 

  91. Monteverde F, Bellosi A (2005) Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci 7:622–630

    Article  CAS  Google Scholar 

  92. Monteverde F (2005) Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl Phys A 82:329–337

    Article  CAS  Google Scholar 

  93. Mikkelsen JC Jr (1984) Self-diffusivity of network oxygen in vitreous SiO2. Appl Phys Lett 45:1187–1189

    Article  CAS  Google Scholar 

  94. Williams PA, Sakidja R, Perepezko JH, Ritt P (2012) Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content. J Eur Ceram Soc 32:3875–3883

    Article  CAS  Google Scholar 

  95. Han W-B, Hu P, Zhang X-H et al (2008) High-temperature oxidation at 1900 °C of ZrB2–xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc 91:3328–3334

    Article  CAS  Google Scholar 

  96. Inoue R, Arai Y, Kubota Y (2017) Oxidation behaviors of ZrB2–SiC binary composites above 2000 °C. Ceram Intl 43:8081–8088

    Article  CAS  Google Scholar 

  97. Han J, Hu P, Zhang X et al (2008) Oxidation-resistant ZrB2–SiC composites at 2200 °C. Compos Sci Technol 68:799–806

    Article  CAS  Google Scholar 

  98. Lavrenko VA, Panasyuk AD, Protsenko TG et al (1982) High-temperature reactions of materials of the ZrB2–ZrSi2 system with oxygen. Sov Powder Metall Met Ceram 21:471–473

    Article  Google Scholar 

  99. Sciti D, Brach M, Bellosi A (2011) Oxidation behavior of a pressureless sintered ZrB2–MoSi2 ceramic composite. J Mater Res 20:922–930

    Article  CAS  Google Scholar 

  100. Opila E, Levine S, Lorincz J (2004) Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions. J Mater Sci 39:5969–5977. https://doi.org/10.1023/B:JMSC.0000041693.32531.d1

    Article  CAS  Google Scholar 

  101. Hu P, Zhang X-H, Han J-C et al (2010) Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1800 °C. J Am Ceram Soc 93:345–349

    Article  CAS  Google Scholar 

  102. Medri V, Monteverde F, Balbo A, Bellosi A (2005) Comparison of ZrB2–ZrC–SiC composites fabricated by spark plasma sintering and hot-pressing. Adv Eng Mater 7:159–163

    Article  CAS  Google Scholar 

  103. Qu Q, Han J, Han W et al (2008) In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Mater Chem Phys 110:216–221

    Article  CAS  Google Scholar 

  104. Zhang X, Qu Q, Han J et al (2008) Microstructural features and mechanical properties of ZrB2–SiC–ZrC composites fabricated by hot pressing and reactive hot pressing. Scripta Mater 59:753–756

    Article  CAS  Google Scholar 

  105. Wang Z, Wu Z, Shi G (2011) The oxidation behaviors of a ZrB2–SiC–ZrC ceramic. Solid State Sci 13:534–538

    Article  CAS  Google Scholar 

  106. Zhanjun W, Zhi W, Qiang Q, Guodong S (2011) Oxidation mechanism of a ZrB2–SiC–ZrC ceramic heated through high frequency induction at 1600 °C. Corros Sci 53:2344–2349

    Article  CAS  Google Scholar 

  107. Wu Z, Wang Z, Shi G, Sheng J (2011) Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic. Compos Sci Technol 71:1501–1506

    Article  CAS  Google Scholar 

  108. Jalaly M, Tamizifar M, Bafghi MS, Gotor FJ (2013) Mechanochemical synthesis of ZrB2–SiC–ZrC nanocomposite powder by metallothermic reduction of zircon. J Alloys Compd 581:782–787

    Article  CAS  Google Scholar 

  109. Liu H-L, Liu J-X, Liu H-T, Zhang G-J (2015) Changed oxidation behavior of ZrB2–SiC ceramics with the addition of ZrC. Ceram Intl 41:8247–8251

    Article  CAS  Google Scholar 

  110. Wang Z, Zhou P, Wu Z (2015) Effect of surface oxidation on thermal shock resistance of ZrB2–SiC–ZrC ceramic at temperature difference from 800 to 1900 °C. Corros Sci 98:233–239

    Article  CAS  Google Scholar 

  111. Liu H-L, Liu J-X, Liu H-T, Zhang G-J (2015) Contour maps of mechanical properties in ternary ZrB2–SiC–ZrC ceramic system. Scripta Mater 107:140–144

    Article  CAS  Google Scholar 

  112. Arai Y, Inoue R, Tanaka H et al (2016) In-situ observation of oxidation behavior in ZrB2–SiC–ZrC ternary composites up to 1500 °C using high-temperature observation system. J Ceram Soc Japan 124:890–897

    Article  CAS  Google Scholar 

  113. Emami SM, Salahi E, Zakeri M, Tayebifard SA (2016) Synthesis of ZrB2–SiC–ZrC nanocomposite by spark plasma in ZrSiO4/B2O3/C/Mg system. Ceram Intl 42:6581–6586

    Article  CAS  Google Scholar 

  114. Kubota Y, Tanaka H, Arai Y et al (2017) Oxidation behavior of ZrB2–SiC–ZrC at 1700 °C. J Eur Ceram Soc 37:1187–1194

    Article  CAS  Google Scholar 

  115. Kubota Y, Yano M, Inoue R et al (2018) Oxidation behavior of ZrB2–SiC–ZrC in oxygen-hydrogen torch environment. J Eur Ceram Soc 38:1095–1102

    Article  CAS  Google Scholar 

  116. Inoue R, Arai Y, Kubota Y et al (2018) Initial oxidation behaviors of ZrB2–SiC–ZrC ternary composites above 2000 °C. J Alloys Compd 731:310–317

    Article  CAS  Google Scholar 

  117. Vojtovich RF, Pugach EA (1973) High-temperature oxidation of ZrC and HfC. Sov Powder Metall Metal Ceram 12:916–921

    Google Scholar 

  118. Rao GAR, Venugopal V (1994) Kinetics and mechanism of the oxidation of ZrC. J Alloys Compd 206:237–242

    Article  Google Scholar 

  119. Opeka MM, Talmy IG, Wuchina EJ et al (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Inoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, R., Arai, Y., Kubota, Y. et al. Oxidation of ZrB2 and its composites: a review. J Mater Sci 53, 14885–14906 (2018). https://doi.org/10.1007/s10853-018-2601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2601-0

Keywords

Navigation