Skip to main content
Log in

Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals of silver chloride. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. Our results indicate the p-doping of nanotubes by silver chloride accompanied by the charge transfer from the nanotubes to the encapsulated compound and the downshift of the Fermi level by 0.36 eV. The calculated number of transferred electrons per nanotube carbon atom and the charge transfer density per nanotube length amounted to 0.0024 e per carbon and 0.0406 e/Å, respectively. It was found that the band gap opens up in the band structure of the filled SWCNTs resulting in their transition from metallic into a semiconducting state. This work reveals a direct influence of the incorporated silver chloride on the electronic properties of metallicity-sorted metallic SWCNTs and demonstrates the potential of precise Fermi level engineering of SWCNTs by filling their channels and achieving high doping levels, thus providing a platform for designing next-generation nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  Google Scholar 

  2. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyer R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  Google Scholar 

  3. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  4. Joselevich E, Dai HJ, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: topics in applied physics, vol 111. Springer, Berlin, pp 101–164

    Chapter  Google Scholar 

  5. Kharlamova MV (2015) Single-walled carbon nanotubes: synthesis and modification of the electronic structure. In: D’Souza F, Kadish K (eds) Handbook of carbon nano materials, vol 7. World Scientific Publishing, Singapore, pp 185–229

    Chapter  Google Scholar 

  6. Kharlamova MV (2016) Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog Mater Sci 77:125–211

    Article  Google Scholar 

  7. Kharlamova MV (2013) Electronic properties of pristine and modified single-walled carbon nanotubes. Phys Usp 56:1047–1073

    Article  Google Scholar 

  8. Fan X, Dickey EC, Eklund PC, Williams KA, Grigorian L, Buczko R, Pantelides ST, Pennycook SJ (2000) Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys Rev Lett 84:4621–4624

    Article  Google Scholar 

  9. Chernysheva MV, Kiseleva EA, Verbitskii NI, Eliseev AA, Lukashin AV, Tretyakov YD, Savilov SV, Kiselev NA, Zhigalina OM, Kumskov AS, Krestinin AV, Hutchison JL (2008) The electronic properties of SWNTs intercalated by electron acceptors. Physica E 40:2283–2288

    Article  Google Scholar 

  10. Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater 12:202–205

    Article  Google Scholar 

  11. Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480

    Article  Google Scholar 

  12. Borowiak-Palen E, Ruemmeli MH, Gemming T, Pichler T, Kalenczuk RJ, Silva SRP (2006) Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 17:2415–2419

    Article  Google Scholar 

  13. Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli MH, Gemming T, Nogues J, Skumryev V, Kalenczuk RJ, Pichler T, Silva SRP (2006) Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem Phys Lett 421:129–133

    Article  Google Scholar 

  14. Sloan J, Kirkland AI, Hutchison JL, Green MLH (2003) Aspects of crystal growth within carbon nanotubes. C R Phys 4:1063–1074

    Article  Google Scholar 

  15. Sloan J, Friedrichs S, Meyer RR, Kirkland AI, Hutchison JL, Green MLH (2002) Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review. Inorg Chim Acta 330:1–12

    Article  Google Scholar 

  16. Philp E, Sloan J, Kirkland AI, Meyer RR, Friedrichs S, Hutchison JL, Green MLH (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791

    Article  Google Scholar 

  17. Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1326

    Article  Google Scholar 

  18. Kirkland AI, Meyer MR, Sloan J, Hutchison JL (2005) Structure determination of atomically controlled crystal architectures grown within single wall carbon nanotubes. Microsc Microanal 11:401–409

    Article  Google Scholar 

  19. Carter R, Sloan J, Kirkland AI, Meyer RR, Lindan PJD, Lin G, Green MLH, Vlandas A, Hutchison JL, Harding J (2006) Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys Rev Lett 96:215501

    Article  Google Scholar 

  20. Carter R, Suyetin M, Lister S, Dyson MA, Trewhitt H, Goel S, Liu Z, Suenaga K, Giusca C, Kashtiban RJ, Hutchison JL, Dore JC, Bell GR, Bichoutskaia E, Sloan J (2014) Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 4:7391–7399

    Article  Google Scholar 

  21. Hulman M, Kuzmany H, Costa PMFJ, Friedrichs S, Green MLH (2004) Light-induced instability of PbO-filled single-wall carbon nanotubes. Appl Phys Lett 85:2068–2070

    Article  Google Scholar 

  22. Bajpai A, Gorantla S, Loffler M, Hampel S, Rummeli MH, Thomas J, Ritschel M, Gemming T, Buechner B, Klingeler R (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709

    Article  Google Scholar 

  23. Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387

    Article  Google Scholar 

  24. Luzzi DE, Smith BW (2000) Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon 38:1751–1756

    Article  Google Scholar 

  25. Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K, Iijima S, Suzuki S, Achiba Y, Kratschmer W (2001) High-yield fullerene encapsulation in single-wall carbon nanotubes. Synthet Met 121:1195–1196

    Article  Google Scholar 

  26. Khlobystov AN, Porfyrakis K, Kanai M, Britz DA, Ardavan A, Shinohara H, Dennis TJS, Briggs GAD (2004) Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew Chem Int Ed 43:1386–1389

    Article  Google Scholar 

  27. Guan LH, Shi ZJ, Li MX, Gu ZN (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785

    Article  Google Scholar 

  28. Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485

    Article  Google Scholar 

  29. Shiozawa H, Kramberger C, Pfeiffer R, Kuzmany H, Pichler T, Liu Z, Suenaga K, Kataura H, Silva SRP (2010) Catalyst and chirality dependent growth of carbon nanotubes determined through nano-test tube chemistry. Adv Mater 22:3685–3689

    Article  Google Scholar 

  30. Monthioux M, Flahaut E, Cleuziou JP (2006) Hybrid carbon nanotubes: strategy, progress, and perspectives. J Mater Res 21:2774–2793

    Article  Google Scholar 

  31. Kharlamova MV, Yashina LV, Volykhov AA, Niu JJ, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Belogorokhov AI, Eliseev AA (2012) Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 85:34

    Article  Google Scholar 

  32. Kharlamova MV, Yashina LV, Eliseev AA, Volykhov AA, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Lukashin AV, Tretyakov YD (2012) Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 249:2328–2332

    Article  Google Scholar 

  33. Kharlamova MV, Yashina LV, Lukashin AV (2013) Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J Mater Sci 48:8412–8419. https://doi.org/10.1007/s10853-013-7653-6

    Article  Google Scholar 

  34. Kharlamova MV (2016) Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Appl Phys A 122:791

    Article  Google Scholar 

  35. Kharlamova MV, Kramberger C, Pichler T (2016) Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride. Phys Status Solidi B 253:2433–2439

    Article  Google Scholar 

  36. Kharlamova MV, Niu JJ (2012) Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl Phys A 109:25–29

    Article  Google Scholar 

  37. Kharlamova MV, Niu JJ (2012) Donor doping of single-walled carbon nanotubes by filling of channels with silver. J Exp Theor Phys 115:485–491

    Article  Google Scholar 

  38. Kharlamova MV, Niu JJ (2012) New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett 95:314–319

    Article  Google Scholar 

  39. Kharlamova MV, Sauer M, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2015) Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 7:1383–1391

    Article  Google Scholar 

  40. Shiozawa H, Pichler T, Kramberger C, Grueneis A, Knupfer M, Buechner B, Zylyomi V, Koltai J, Kuerti J, Batchelor D, Kataura H (2008) Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Phys Rev B 77:153402

    Article  Google Scholar 

  41. Shiozawa H, Pichler T, Kramberger C, Ruemmeli M, Batchelor D, Liu Z, Suenaga K, Kataura H, Silva SRP (2009) Screening the missing electron: nanochemistry in action. Phys Rev Lett 102:046804

    Article  Google Scholar 

  42. Kharlamova MV, Kramberger C, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2017) Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale 9:7998–8006

    Article  Google Scholar 

  43. Kharlamova MV, Sauer M, Saito T, Krause S, Liu X, Yanagi K, Pichler T, Shiozawa H (2013) Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Phys Status Solidi B 250:2575–2580

    Article  Google Scholar 

  44. Yashina LV, Eliseev AA, Kharlamova MV, Volykhov AA, Egorov AV, Savilov SV, Lukashin AV, Puttner R, Belogorokhov AI (2011) Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 115:3578–3586

    Article  Google Scholar 

  45. Kharlamova MV, Yashina LV, Lukashin AV (2013) Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 112:297–304

    Article  Google Scholar 

  46. Kharlamova MV (2014) Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. J Mater Sci 49:8402–8411. https://doi.org/10.1007/s10853-014-8550-3

    Article  Google Scholar 

  47. Kuzmany H, Plank W, Hulman M, Kramberger C, Gruneis A, Pichler T, Peterlik H, Kataura H, Achiba Y (2001) Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur Phys J B 22:307–320

    Article  Google Scholar 

  48. Araujo PT, Maciel IO, Pesce PBC, Pimenta MA, Doorn SK, Qian H, Hartschuh A, Steiner M, Grigorian L, Hata K, Jorio A (2008) Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403

    Article  Google Scholar 

  49. Kramberger C, Rauf H, Knupfer M, Shiozawa H, Batchelor D, Rubio A, Kataura H, Pichler T (2009) Potassium-intercalated single-wall carbon nanotube bundles: archetypes for semiconductor/metal hybrid systems. Phys Rev B 79:195442

    Article  Google Scholar 

  50. Ishii H, Kataura H, Shiozawa H, Yoshioka H, Otsubo H, Takayama Y, Miyahara T, Suzuki S, Achiba Y, Nakatake M, Narimura T, Higashiguchi M, Shimada K, Namatame H, Taniguchi M (2003) Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426:540–544

    Article  Google Scholar 

  51. Rauf H, Pichler T, Knupfer M, Fink J, Kataura H (2004) Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes. Phys Rev Lett 93:096805

    Article  Google Scholar 

  52. Yanagi K, Udoguchi H, Sagitani S, Oshima Y, Takenobu T, Kataura H, Ishida T, Matsuda K, Maniwa Y (2010) Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 4:4027–4032

    Article  Google Scholar 

  53. Kharlamova MV, Kramberger C, Sauer M, Yanagi K, Pichler T (2015) Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Phys Status Solidi B 252:2512–2518

    Article  Google Scholar 

  54. Kirchhoff F, Holender JM, Gillan MJ (1994) Energetics and electronic structure of silver chloride. Phys Rev B 49:17420–17423

    Article  Google Scholar 

  55. Moulder JF, Stickle WF, Sobol PE, Bomen KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Waltham

    Google Scholar 

  56. Dresselhaus MS, Dresselhaus G, Jorio A, Souza AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061

    Article  Google Scholar 

  57. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558

    Article  Google Scholar 

  58. Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 61:R5137–R5140

    Article  Google Scholar 

  59. Fouquet M, Telg H, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2009) Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. Phys Rev Lett 102:075501

    Article  Google Scholar 

  60. Sasaki K, Farhat H, Saito R, Dresselhaus MS (2010) Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. Physica E 42:2005–2015

    Article  Google Scholar 

  61. Ayala P, Kitaura R, Kramberger C, Shiozawa H, Imazu N, Kobayashi K, Mowbray DJ, Hoffmann P, Shinohara H, Pichler T (2011) A resonant photoemission insight to the electronic structure of Gd nanowires templated in the hollow core of SWCNTs. Mater Exp 1:30–35

    Article  Google Scholar 

  62. Ayala P, Kitaura R, Nakanishi R, Shiozawa H, Ogawa D, Hoffmann P, Shinohara H, Pichler T (2011) Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes. Phys Rev B 83:085407

    Article  Google Scholar 

  63. Eliseev AA, Yashina LV, Verbitskiy NI, Brzhezinskaya MM, Kharlamova MV, Chernysheva MV, Lukashin AV, Kiselev NA, Kumskov AS, Freitag B, Generalov AV, Vinogradov AS, Zubavichus YV, Kleimenov E, Nachtegaal M (2012) Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 50:4021–4039

    Article  Google Scholar 

Download references

Acknowledgements

K. Y. acknowledges JSPS KAKENHI Grant Number JP16H00919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna V. Kharlamova.

Ethics declarations

Conflict of interest

The authors declare that the contents have no conflict of interest toward any individual or organization.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharlamova, M.V., Kramberger, C., Domanov, O. et al. Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. J Mater Sci 53, 13018–13029 (2018). https://doi.org/10.1007/s10853-018-2575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2575-y

Keywords

Navigation