Advertisement

Journal of Materials Science

, Volume 53, Issue 18, pp 13018–13029 | Cite as

Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride

  • Marianna V. Kharlamova
  • Christian Kramberger
  • Oleg Domanov
  • Andreas Mittelberger
  • Kazuhiro Yanagi
  • Thomas Pichler
  • Dominik Eder
Electronic materials
  • 99 Downloads

Abstract

In the present work, the channels of metallicity-sorted metallic single-walled carbon nanotubes (SWCNTs) have been filled with silver chloride. The data of high-resolution scanning transmission electron microscopy proved the filling of the nanotube channels and formation of few-atom-thick crystals of silver chloride. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. Our results indicate the p-doping of nanotubes by silver chloride accompanied by the charge transfer from the nanotubes to the encapsulated compound and the downshift of the Fermi level by 0.36 eV. The calculated number of transferred electrons per nanotube carbon atom and the charge transfer density per nanotube length amounted to 0.0024 e per carbon and 0.0406 e/Å, respectively. It was found that the band gap opens up in the band structure of the filled SWCNTs resulting in their transition from metallic into a semiconducting state. This work reveals a direct influence of the incorporated silver chloride on the electronic properties of metallicity-sorted metallic SWCNTs and demonstrates the potential of precise Fermi level engineering of SWCNTs by filling their channels and achieving high doping levels, thus providing a platform for designing next-generation nanoelectronic devices.

Notes

Acknowledgements

K. Y. acknowledges JSPS KAKENHI Grant Number JP16H00919.

Compliance with ethical standards

Conflict of interest

The authors declare that the contents have no conflict of interest toward any individual or organization.

Supplementary material

10853_2018_2575_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2489 kb)

References

  1. 1.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605CrossRefGoogle Scholar
  2. 2.
    Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, Beyer R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRefGoogle Scholar
  3. 3.
    Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, LondonCrossRefGoogle Scholar
  4. 4.
    Joselevich E, Dai HJ, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: topics in applied physics, vol 111. Springer, Berlin, pp 101–164CrossRefGoogle Scholar
  5. 5.
    Kharlamova MV (2015) Single-walled carbon nanotubes: synthesis and modification of the electronic structure. In: D’Souza F, Kadish K (eds) Handbook of carbon nano materials, vol 7. World Scientific Publishing, Singapore, pp 185–229CrossRefGoogle Scholar
  6. 6.
    Kharlamova MV (2016) Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog Mater Sci 77:125–211CrossRefGoogle Scholar
  7. 7.
    Kharlamova MV (2013) Electronic properties of pristine and modified single-walled carbon nanotubes. Phys Usp 56:1047–1073CrossRefGoogle Scholar
  8. 8.
    Fan X, Dickey EC, Eklund PC, Williams KA, Grigorian L, Buczko R, Pantelides ST, Pennycook SJ (2000) Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys Rev Lett 84:4621–4624CrossRefGoogle Scholar
  9. 9.
    Chernysheva MV, Kiseleva EA, Verbitskii NI, Eliseev AA, Lukashin AV, Tretyakov YD, Savilov SV, Kiselev NA, Zhigalina OM, Kumskov AS, Krestinin AV, Hutchison JL (2008) The electronic properties of SWNTs intercalated by electron acceptors. Physica E 40:2283–2288CrossRefGoogle Scholar
  10. 10.
    Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater 12:202–205CrossRefGoogle Scholar
  11. 11.
    Corio P, Santos AP, Santos PS, Temperini MLA, Brar VW, Pimenta MA, Dresselhaus MS (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480CrossRefGoogle Scholar
  12. 12.
    Borowiak-Palen E, Ruemmeli MH, Gemming T, Pichler T, Kalenczuk RJ, Silva SRP (2006) Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 17:2415–2419CrossRefGoogle Scholar
  13. 13.
    Borowiak-Palen E, Mendoza E, Bachmatiuk A, Rummeli MH, Gemming T, Nogues J, Skumryev V, Kalenczuk RJ, Pichler T, Silva SRP (2006) Iron filled single-wall carbon nanotubes—a novel ferromagnetic medium. Chem Phys Lett 421:129–133CrossRefGoogle Scholar
  14. 14.
    Sloan J, Kirkland AI, Hutchison JL, Green MLH (2003) Aspects of crystal growth within carbon nanotubes. C R Phys 4:1063–1074CrossRefGoogle Scholar
  15. 15.
    Sloan J, Friedrichs S, Meyer RR, Kirkland AI, Hutchison JL, Green MLH (2002) Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: a brief review. Inorg Chim Acta 330:1–12CrossRefGoogle Scholar
  16. 16.
    Philp E, Sloan J, Kirkland AI, Meyer RR, Friedrichs S, Hutchison JL, Green MLH (2003) An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater 2:788–791CrossRefGoogle Scholar
  17. 17.
    Meyer RR, Sloan J, Dunin-Borkowski RE, Kirkland AI, Novotny MC, Bailey SR, Hutchison JL, Green MLH (2000) Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289:1324–1326CrossRefGoogle Scholar
  18. 18.
    Kirkland AI, Meyer MR, Sloan J, Hutchison JL (2005) Structure determination of atomically controlled crystal architectures grown within single wall carbon nanotubes. Microsc Microanal 11:401–409CrossRefGoogle Scholar
  19. 19.
    Carter R, Sloan J, Kirkland AI, Meyer RR, Lindan PJD, Lin G, Green MLH, Vlandas A, Hutchison JL, Harding J (2006) Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys Rev Lett 96:215501CrossRefGoogle Scholar
  20. 20.
    Carter R, Suyetin M, Lister S, Dyson MA, Trewhitt H, Goel S, Liu Z, Suenaga K, Giusca C, Kashtiban RJ, Hutchison JL, Dore JC, Bell GR, Bichoutskaia E, Sloan J (2014) Band gap expansion, shear inversion phase change behaviour and low-voltage induced crystal oscillation in low-dimensional tin selenide crystals. Dalton Trans 4:7391–7399CrossRefGoogle Scholar
  21. 21.
    Hulman M, Kuzmany H, Costa PMFJ, Friedrichs S, Green MLH (2004) Light-induced instability of PbO-filled single-wall carbon nanotubes. Appl Phys Lett 85:2068–2070CrossRefGoogle Scholar
  22. 22.
    Bajpai A, Gorantla S, Loffler M, Hampel S, Rummeli MH, Thomas J, Ritschel M, Gemming T, Buechner B, Klingeler R (2012) The filling of carbon nanotubes with magnetoelectric Cr2O3. Carbon 50:1706–1709CrossRefGoogle Scholar
  23. 23.
    Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85:5384–5387CrossRefGoogle Scholar
  24. 24.
    Luzzi DE, Smith BW (2000) Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon 38:1751–1756CrossRefGoogle Scholar
  25. 25.
    Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K, Iijima S, Suzuki S, Achiba Y, Kratschmer W (2001) High-yield fullerene encapsulation in single-wall carbon nanotubes. Synthet Met 121:1195–1196CrossRefGoogle Scholar
  26. 26.
    Khlobystov AN, Porfyrakis K, Kanai M, Britz DA, Ardavan A, Shinohara H, Dennis TJS, Briggs GAD (2004) Molecular motion of endohedral fullerenes in single-walled carbon nanotubes. Angew Chem Int Ed 43:1386–1389CrossRefGoogle Scholar
  27. 27.
    Guan LH, Shi ZJ, Li MX, Gu ZN (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785CrossRefGoogle Scholar
  28. 28.
    Li LJ, Khlobystov AN, Wiltshire JG, Briggs GAD, Nicholas RJ (2005) Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat Mater 4:481–485CrossRefGoogle Scholar
  29. 29.
    Shiozawa H, Kramberger C, Pfeiffer R, Kuzmany H, Pichler T, Liu Z, Suenaga K, Kataura H, Silva SRP (2010) Catalyst and chirality dependent growth of carbon nanotubes determined through nano-test tube chemistry. Adv Mater 22:3685–3689CrossRefGoogle Scholar
  30. 30.
    Monthioux M, Flahaut E, Cleuziou JP (2006) Hybrid carbon nanotubes: strategy, progress, and perspectives. J Mater Res 21:2774–2793CrossRefGoogle Scholar
  31. 31.
    Kharlamova MV, Yashina LV, Volykhov AA, Niu JJ, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Belogorokhov AI, Eliseev AA (2012) Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. Eur Phys J B 85:34CrossRefGoogle Scholar
  32. 32.
    Kharlamova MV, Yashina LV, Eliseev AA, Volykhov AA, Neudachina VS, Brzhezinskaya MM, Zyubina TS, Lukashin AV, Tretyakov YD (2012) Single-walled carbon nanotubes filled with nickel halogenides: atomic structure and doping effect. Phys Status Solidi B 249:2328–2332CrossRefGoogle Scholar
  33. 33.
    Kharlamova MV, Yashina LV, Lukashin AV (2013) Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. J Mater Sci 48:8412–8419.  https://doi.org/10.1007/s10853-013-7653-6 CrossRefGoogle Scholar
  34. 34.
    Kharlamova MV (2016) Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Appl Phys A 122:791CrossRefGoogle Scholar
  35. 35.
    Kharlamova MV, Kramberger C, Pichler T (2016) Semiconducting response in single-walled carbon nanotubes filled with cadmium chloride. Phys Status Solidi B 253:2433–2439CrossRefGoogle Scholar
  36. 36.
    Kharlamova MV, Niu JJ (2012) Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Appl Phys A 109:25–29CrossRefGoogle Scholar
  37. 37.
    Kharlamova MV, Niu JJ (2012) Donor doping of single-walled carbon nanotubes by filling of channels with silver. J Exp Theor Phys 115:485–491CrossRefGoogle Scholar
  38. 38.
    Kharlamova MV, Niu JJ (2012) New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Lett 95:314–319CrossRefGoogle Scholar
  39. 39.
    Kharlamova MV, Sauer M, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2015) Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 7:1383–1391CrossRefGoogle Scholar
  40. 40.
    Shiozawa H, Pichler T, Kramberger C, Grueneis A, Knupfer M, Buechner B, Zylyomi V, Koltai J, Kuerti J, Batchelor D, Kataura H (2008) Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Phys Rev B 77:153402CrossRefGoogle Scholar
  41. 41.
    Shiozawa H, Pichler T, Kramberger C, Ruemmeli M, Batchelor D, Liu Z, Suenaga K, Kataura H, Silva SRP (2009) Screening the missing electron: nanochemistry in action. Phys Rev Lett 102:046804CrossRefGoogle Scholar
  42. 42.
    Kharlamova MV, Kramberger C, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H (2017) Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes. Nanoscale 9:7998–8006CrossRefGoogle Scholar
  43. 43.
    Kharlamova MV, Sauer M, Saito T, Krause S, Liu X, Yanagi K, Pichler T, Shiozawa H (2013) Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. Phys Status Solidi B 250:2575–2580CrossRefGoogle Scholar
  44. 44.
    Yashina LV, Eliseev AA, Kharlamova MV, Volykhov AA, Egorov AV, Savilov SV, Lukashin AV, Puttner R, Belogorokhov AI (2011) Growth and characterization of one-dimensional SnTe crystals within the single-walled carbon nanotube channels. J Phys Chem C 115:3578–3586CrossRefGoogle Scholar
  45. 45.
    Kharlamova MV, Yashina LV, Lukashin AV (2013) Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Appl Phys A 112:297–304CrossRefGoogle Scholar
  46. 46.
    Kharlamova MV (2014) Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. J Mater Sci 49:8402–8411.  https://doi.org/10.1007/s10853-014-8550-3 CrossRefGoogle Scholar
  47. 47.
    Kuzmany H, Plank W, Hulman M, Kramberger C, Gruneis A, Pichler T, Peterlik H, Kataura H, Achiba Y (2001) Determination of SWCNT diameters from the Raman response of the radial breathing mode. Eur Phys J B 22:307–320CrossRefGoogle Scholar
  48. 48.
    Araujo PT, Maciel IO, Pesce PBC, Pimenta MA, Doorn SK, Qian H, Hartschuh A, Steiner M, Grigorian L, Hata K, Jorio A (2008) Nature of the constant factor in the relation between radial breathing mode frequency and tube diameter for single-wall carbon nanotubes. Phys Rev B 77:241403CrossRefGoogle Scholar
  49. 49.
    Kramberger C, Rauf H, Knupfer M, Shiozawa H, Batchelor D, Rubio A, Kataura H, Pichler T (2009) Potassium-intercalated single-wall carbon nanotube bundles: archetypes for semiconductor/metal hybrid systems. Phys Rev B 79:195442CrossRefGoogle Scholar
  50. 50.
    Ishii H, Kataura H, Shiozawa H, Yoshioka H, Otsubo H, Takayama Y, Miyahara T, Suzuki S, Achiba Y, Nakatake M, Narimura T, Higashiguchi M, Shimada K, Namatame H, Taniguchi M (2003) Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426:540–544CrossRefGoogle Scholar
  51. 51.
    Rauf H, Pichler T, Knupfer M, Fink J, Kataura H (2004) Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes. Phys Rev Lett 93:096805CrossRefGoogle Scholar
  52. 52.
    Yanagi K, Udoguchi H, Sagitani S, Oshima Y, Takenobu T, Kataura H, Ishida T, Matsuda K, Maniwa Y (2010) Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 4:4027–4032CrossRefGoogle Scholar
  53. 53.
    Kharlamova MV, Kramberger C, Sauer M, Yanagi K, Pichler T (2015) Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. Phys Status Solidi B 252:2512–2518CrossRefGoogle Scholar
  54. 54.
    Kirchhoff F, Holender JM, Gillan MJ (1994) Energetics and electronic structure of silver chloride. Phys Rev B 49:17420–17423CrossRefGoogle Scholar
  55. 55.
    Moulder JF, Stickle WF, Sobol PE, Bomen KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, WalthamGoogle Scholar
  56. 56.
    Dresselhaus MS, Dresselhaus G, Jorio A, Souza AG, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061CrossRefGoogle Scholar
  57. 57.
    Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558CrossRefGoogle Scholar
  58. 58.
    Brown SDM, Corio P, Marucci A, Dresselhaus MS, Pimenta MA, Kneipp K (2000) Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys Rev B 61:R5137–R5140CrossRefGoogle Scholar
  59. 59.
    Fouquet M, Telg H, Maultzsch J, Wu Y, Chandra B, Hone J, Heinz TF, Thomsen C (2009) Longitudinal optical phonons in metallic and semiconducting carbon nanotubes. Phys Rev Lett 102:075501CrossRefGoogle Scholar
  60. 60.
    Sasaki K, Farhat H, Saito R, Dresselhaus MS (2010) Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. Physica E 42:2005–2015CrossRefGoogle Scholar
  61. 61.
    Ayala P, Kitaura R, Kramberger C, Shiozawa H, Imazu N, Kobayashi K, Mowbray DJ, Hoffmann P, Shinohara H, Pichler T (2011) A resonant photoemission insight to the electronic structure of Gd nanowires templated in the hollow core of SWCNTs. Mater Exp 1:30–35CrossRefGoogle Scholar
  62. 62.
    Ayala P, Kitaura R, Nakanishi R, Shiozawa H, Ogawa D, Hoffmann P, Shinohara H, Pichler T (2011) Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes. Phys Rev B 83:085407CrossRefGoogle Scholar
  63. 63.
    Eliseev AA, Yashina LV, Verbitskiy NI, Brzhezinskaya MM, Kharlamova MV, Chernysheva MV, Lukashin AV, Kiselev NA, Kumskov AS, Freitag B, Generalov AV, Vinogradov AS, Zubavichus YV, Kleimenov E, Nachtegaal M (2012) Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X = Cl, Br, I) nanostructures. Carbon 50:4021–4039CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials ChemistryVienna University of TechnologyViennaAustria
  2. 2.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  3. 3.Faculty of PhysicsUniversity of ViennaViennaAustria
  4. 4.Department of PhysicsTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations