Skip to main content
Log in

Electrochemical impedance study of water transportation in corona-aged silicone rubber: effect of applied voltage

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silicone rubber is widely used as the housing material of composite insulator for outdoor high-voltage insulation. However, corona-induced aging in silicone rubber contributes to the ingress of water or moisture, which finally leads to fracture of a composite insulator. To investigate water transportation in silicone rubber helps to shed light upon the insulator fracture mechanism. In this work, water transportation behaviors in silicone rubber treated by different applied voltages of corona discharge were systematically studied using electrochemical impedance spectroscopy (EIS). Low voltages (3, 4 kV) of corona treatments result in growing value of \(f_{\theta \mathrm{min}}\) in Bode phase angle, indicative of severer degree of surface delamination. After 5 kV of corona treatment, water can finally diffuse through the silicone rubber, and then induces double-layer capacitance (\(C_{\mathrm{dl}}\)) and the charge transfer resistance (\(R_{\mathrm{ct}}\)) in EIS spectra. For high-voltage (\(\ge 6\ \hbox {kV}\)) corona-exposed samples, great number of surface cracks are observed, and then Warburg impedance appears in EIS spectra on initial period of immersion, suggesting a direct water transportation process. The polar groups generated in silicone rubber during corona exposure also facilitate this water diffusion process. Calculated water diffusion coefficients show a sharp increase between 5 and 6 kV, which serves as an indicator for percolation of cracks or defects in bulk of silicone rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Hackam R (1999) Outdoor HV composite polymeric insulators. IEEE Trans Dielectr Electr Insul 6(5):557

    Article  Google Scholar 

  2. Gorur RS, Orbeck T (1991) Surface dielectric behavior of polymeric insulation under HV outdoor conditions. IEEE Trans Electr Insul 26(5):1064

    Article  Google Scholar 

  3. Ansorge S, Schmuck F, Papailiou KO (2012) Improved silicone rubbers for the use as housing material in composite insulators. IEEE Trans Dielectr Electr Insul 19(1):209

    Article  Google Scholar 

  4. Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielectr Electr Insul 6(5):703

    Article  Google Scholar 

  5. Reddy BS, Prasad DS (2015) Effect of coldfog on the corona induced degradation of silicone rubber samples. IEEE Trans Dielectr Electr Insul 22(3):1711

    Article  Google Scholar 

  6. Reynders JP, Jandrell IR, Reynders SM (1999) Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans Dielectr Electr Insul 6(5):620

    Article  Google Scholar 

  7. Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19(6):1152

    Article  Google Scholar 

  8. Zhu Y, Otsubo M, Honda C, Tanaka S (2006) Loss and recovery in hydrophobicity of silicone rubber exposed to corona discharge. Polym Degrad Stab 91(7):1448

    Article  Google Scholar 

  9. Hillborg H, Gedde UW (1998) Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39(10):1991

    Article  Google Scholar 

  10. Kim J, Chaudhury MK, Owen MJ (2000) Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J Colloid Interface Sci 226(2):231

    Article  Google Scholar 

  11. Gorur RS, Karady GG, Jagota A, Shah M, Yates AM (1992) Aging in silicone rubber used for outdoor insulations. IEEE Trans Power Deliv 7(2):525

    Article  Google Scholar 

  12. Gubanski SM (2005) Modern outdoor insulation—concerns and challenges. IEEE Electr Insul Mag 21(6):5

    Article  Google Scholar 

  13. Wang J, Liang X, Gao Y (2014) Failure analysis of decay-like fracture of composite insulator. IEEE Trans Dielectr Electr Insul 21(6):2503

    Article  Google Scholar 

  14. Liang X, Dai J (2006) Analysis of the acid sources of a field brittle fractured composite insulator. IEEE Trans Dielectr Electr Insul 13(4):870

    Article  Google Scholar 

  15. Lutz B, Cheng L, Guan Z, Wang L, Zhang F (2012) Analysis of a fractured 500 kV composite insulator - identification of aging mechanisms and their causes. IEEE Trans Dielectr Electr Insul 19(5):1723

    Article  Google Scholar 

  16. Montesinos J, Gorur RS, Mobasher B, Kingsbury D (2002) Mechanism of brittle fracture in nonceramic insulators. IEEE Trans Dielectr Electr Insul 9(2):236

    Article  Google Scholar 

  17. Lutz B, Guan Z, Wang L, Zhang F, L Z 2012 In: 2012 IEEE International Symposium on Electrical Insulation, pp 478–482

  18. Dai J, Yao XF, Yeh HY, Liang X (2006) Moisture absorption of filled silicone rubber under electrolyte. J Appl Polym Sci 99(5):2253

    Article  Google Scholar 

  19. Gao Y, Wang J, Liang X, Yan Z, Liu Y, Cai Y (2014) Investigation on permeation properties of liquids into HTV silicone rubber materials. IEEE Trans Dielectr Electr Insul 21(6):2428

    Article  Google Scholar 

  20. Wang Z, Zhao LH, Jia ZD, Guan ZC (2017) Water and moisture permeability of high-temperature vulcanized silicone rubber. IEEE Trans Dielectr Electr Insul 24(4):2440

    Article  Google Scholar 

  21. Wang Z, Jia ZD, Fang MH, Guan ZC (2015) Absorption and permeation of water and aqueous solutions of high-temperature vulcanized silicone rubber. IEEE Trans Dielectr Electr Insul 22(6):3357

    Article  Google Scholar 

  22. Perez C, Collazo A, Izquierdo M, Merino P, Novoa XR (1999) Characterisation of the barrier properties of different paint systems : part I. Experimental set-up and ideal fickian diffusion. Prog Org Coat 36(1):102

    Article  Google Scholar 

  23. Fárnandez-Sánchez C, Mcneil CJ, Rawson K (2005) Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trends Anal Chem 24(1):37

    Article  Google Scholar 

  24. Liu F, Yin M, Xiong B, Zheng F, Mao W, Chen Z, He C, Zhao X, Fang P (2014) Evolution of microstructure of epoxy coating during UV degradation progress studied by slow positron annihilation spectroscopy and electrochemical impedance spectroscopy. Electrochim Acta 133:283

    Article  Google Scholar 

  25. Hu JM, Zhang JT, Zhang JQ, Cao CN (2004) A novel method for determination of diffusion coefficient of corrosive species in organic coatings by EIS. J Mater Sci 39(14):4475. https://doi.org/10.1023/B:JMSC.0000034140.96862.1a

    Article  Google Scholar 

  26. Larson BJ, Gillmor SD, Braun JM, Cruz-Barba LE, Savage DE, Denes FS, Lagally MG (2013) Long-term reduction in poly (dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir 29(42):12990

    Article  Google Scholar 

  27. Hollahan JR, Carlson GL (1970) Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas. J Appl Polym Sci 14(10):2499

    Article  Google Scholar 

  28. Hillborg H, Sandelin M, Gedde UW (2001) Hydrophobic recovery of polydimethylsioxane after exposure to partial discharges as a function of crosslink density. Polymer 42(17):7349

    Article  Google Scholar 

  29. Zhang JT, Hu JM, Zhang JQ, Cao CN (2004) Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS. Prog Org Coat 51(2):145

    Article  Google Scholar 

  30. Zhang JT, Hu JM, Zhang JQ, Cao CN (2004) Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Prog Org Coat 49(4):293

    Article  Google Scholar 

  31. Amirudin A, Thieny D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1

    Article  Google Scholar 

  32. Mansfeld F, Tsai CH (1991) Determination of coating deterioration with EIS: I. Basic relationships. Corrosion 47(12):958

    Article  Google Scholar 

  33. Murray JN (1997) Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: multiple test parameter measurements. Prog Org Coat 31(3):255

    Article  Google Scholar 

  34. Cano E, Lafuente D, Bastidas DM (2010) Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. J Solid State Electrochem 14(3):381

    Article  Google Scholar 

  35. Senkevich JJ (2000) Degradation of an alkyd polymer coating characterized by AC impedance. J Mater Sci 35(6):1359. https://doi.org/10.1023/A:1004730006941

    Article  Google Scholar 

  36. Kolek Z (1997) Characterization of water penetration inside organic coatings by capacitance measurements. Prog Org Coat 30(4):287

    Article  Google Scholar 

  37. Hsu CH, Mansfeld F (2001) Technical note: concerning the conversion of the constant phase element parameter \(\text{ Y }_{0}\) into a capacitance. Corrosion 57(9):747

    Article  Google Scholar 

  38. Castela AS, Simoes AM, Ferreira MGS (2000) EIS evaluation of attached and free polymer films. Prog Org Coat 38(1):1

    Article  Google Scholar 

  39. Deflorian F, Fedrizzi L, Bonora P (1996) Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints. Corros Sci 38(10):1697

    Article  Google Scholar 

  40. Liu B, Li Y, Lin H, Cao C (2002) Effect of PVC on the diffusion behaviour of water through alkyd coatings. Corros Sci 44(12):2657

    Article  Google Scholar 

  41. Bellucci F, Nicodemo L, Monetta T, Kloppers MJ, Latanision RM (1992) A study of corrosion initiation on polyimide coatings. Corros Sci 33(8):1203

    Article  Google Scholar 

  42. Deflorian F, Fedrizzi L, Bonora PL (1996) Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints. Corros Sci 38(10):1697

    Article  Google Scholar 

  43. Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191

    Article  Google Scholar 

  44. Saberi AA (2015) Recent advances in percolation theory and its applications. Phys Rep 578:1

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21174108) and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University (No. LF20170857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 233 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yin, C., Li, J. et al. Electrochemical impedance study of water transportation in corona-aged silicone rubber: effect of applied voltage. J Mater Sci 53, 12871–12884 (2018). https://doi.org/10.1007/s10853-018-2523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2523-x

Keywords

Navigation