Journal of Materials Science

, Volume 53, Issue 18, pp 12871–12884 | Cite as

Electrochemical impedance study of water transportation in corona-aged silicone rubber: effect of applied voltage

  • Zheng Wang
  • Chongshan Yin
  • Jingjing Li
  • Yue Yang
  • Long Chen
  • Yi Luo
  • Yong Liu
  • Chunqing He
  • Pengfei Fang


Silicone rubber is widely used as the housing material of composite insulator for outdoor high-voltage insulation. However, corona-induced aging in silicone rubber contributes to the ingress of water or moisture, which finally leads to fracture of a composite insulator. To investigate water transportation in silicone rubber helps to shed light upon the insulator fracture mechanism. In this work, water transportation behaviors in silicone rubber treated by different applied voltages of corona discharge were systematically studied using electrochemical impedance spectroscopy (EIS). Low voltages (3, 4 kV) of corona treatments result in growing value of \(f_{\theta \mathrm{min}}\) in Bode phase angle, indicative of severer degree of surface delamination. After 5 kV of corona treatment, water can finally diffuse through the silicone rubber, and then induces double-layer capacitance (\(C_{\mathrm{dl}}\)) and the charge transfer resistance (\(R_{\mathrm{ct}}\)) in EIS spectra. For high-voltage (\(\ge 6\ \hbox {kV}\)) corona-exposed samples, great number of surface cracks are observed, and then Warburg impedance appears in EIS spectra on initial period of immersion, suggesting a direct water transportation process. The polar groups generated in silicone rubber during corona exposure also facilitate this water diffusion process. Calculated water diffusion coefficients show a sharp increase between 5 and 6 kV, which serves as an indicator for percolation of cracks or defects in bulk of silicone rubber.



This work was financially supported by the National Natural Science Foundation of China (No. 21174108) and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University (No. LF20170857).

Supplementary material

10853_2018_2523_MOESM1_ESM.pdf (203 kb)
Supplementary material 1 (pdf 233 KB)


  1. 1.
    Hackam R (1999) Outdoor HV composite polymeric insulators. IEEE Trans Dielectr Electr Insul 6(5):557CrossRefGoogle Scholar
  2. 2.
    Gorur RS, Orbeck T (1991) Surface dielectric behavior of polymeric insulation under HV outdoor conditions. IEEE Trans Electr Insul 26(5):1064CrossRefGoogle Scholar
  3. 3.
    Ansorge S, Schmuck F, Papailiou KO (2012) Improved silicone rubbers for the use as housing material in composite insulators. IEEE Trans Dielectr Electr Insul 19(1):209CrossRefGoogle Scholar
  4. 4.
    Hillborg H, Gedde UW (1999) Hydrophobicity changes in silicone rubbers. IEEE Trans Dielectr Electr Insul 6(5):703CrossRefGoogle Scholar
  5. 5.
    Reddy BS, Prasad DS (2015) Effect of coldfog on the corona induced degradation of silicone rubber samples. IEEE Trans Dielectr Electr Insul 22(3):1711CrossRefGoogle Scholar
  6. 6.
    Reynders JP, Jandrell IR, Reynders SM (1999) Review of aging and recovery of silicone rubber insulation for outdoor use. IEEE Trans Dielectr Electr Insul 6(5):620CrossRefGoogle Scholar
  7. 7.
    Chang JS, Lawless PA, Yamamoto T (1991) Corona discharge processes. IEEE Trans Plasma Sci 19(6):1152CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Otsubo M, Honda C, Tanaka S (2006) Loss and recovery in hydrophobicity of silicone rubber exposed to corona discharge. Polym Degrad Stab 91(7):1448CrossRefGoogle Scholar
  9. 9.
    Hillborg H, Gedde UW (1998) Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. Polymer 39(10):1991CrossRefGoogle Scholar
  10. 10.
    Kim J, Chaudhury MK, Owen MJ (2000) Hydrophobic recovery of polydimethylsiloxane elastomer exposed to partial electrical discharge. J Colloid Interface Sci 226(2):231CrossRefGoogle Scholar
  11. 11.
    Gorur RS, Karady GG, Jagota A, Shah M, Yates AM (1992) Aging in silicone rubber used for outdoor insulations. IEEE Trans Power Deliv 7(2):525CrossRefGoogle Scholar
  12. 12.
    Gubanski SM (2005) Modern outdoor insulation—concerns and challenges. IEEE Electr Insul Mag 21(6):5CrossRefGoogle Scholar
  13. 13.
    Wang J, Liang X, Gao Y (2014) Failure analysis of decay-like fracture of composite insulator. IEEE Trans Dielectr Electr Insul 21(6):2503CrossRefGoogle Scholar
  14. 14.
    Liang X, Dai J (2006) Analysis of the acid sources of a field brittle fractured composite insulator. IEEE Trans Dielectr Electr Insul 13(4):870CrossRefGoogle Scholar
  15. 15.
    Lutz B, Cheng L, Guan Z, Wang L, Zhang F (2012) Analysis of a fractured 500 kV composite insulator - identification of aging mechanisms and their causes. IEEE Trans Dielectr Electr Insul 19(5):1723CrossRefGoogle Scholar
  16. 16.
    Montesinos J, Gorur RS, Mobasher B, Kingsbury D (2002) Mechanism of brittle fracture in nonceramic insulators. IEEE Trans Dielectr Electr Insul 9(2):236CrossRefGoogle Scholar
  17. 17.
    Lutz B, Guan Z, Wang L, Zhang F, L Z 2012 In: 2012 IEEE International Symposium on Electrical Insulation, pp 478–482Google Scholar
  18. 18.
    Dai J, Yao XF, Yeh HY, Liang X (2006) Moisture absorption of filled silicone rubber under electrolyte. J Appl Polym Sci 99(5):2253CrossRefGoogle Scholar
  19. 19.
    Gao Y, Wang J, Liang X, Yan Z, Liu Y, Cai Y (2014) Investigation on permeation properties of liquids into HTV silicone rubber materials. IEEE Trans Dielectr Electr Insul 21(6):2428CrossRefGoogle Scholar
  20. 20.
    Wang Z, Zhao LH, Jia ZD, Guan ZC (2017) Water and moisture permeability of high-temperature vulcanized silicone rubber. IEEE Trans Dielectr Electr Insul 24(4):2440CrossRefGoogle Scholar
  21. 21.
    Wang Z, Jia ZD, Fang MH, Guan ZC (2015) Absorption and permeation of water and aqueous solutions of high-temperature vulcanized silicone rubber. IEEE Trans Dielectr Electr Insul 22(6):3357CrossRefGoogle Scholar
  22. 22.
    Perez C, Collazo A, Izquierdo M, Merino P, Novoa XR (1999) Characterisation of the barrier properties of different paint systems : part I. Experimental set-up and ideal fickian diffusion. Prog Org Coat 36(1):102CrossRefGoogle Scholar
  23. 23.
    Fárnandez-Sánchez C, Mcneil CJ, Rawson K (2005) Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trends Anal Chem 24(1):37CrossRefGoogle Scholar
  24. 24.
    Liu F, Yin M, Xiong B, Zheng F, Mao W, Chen Z, He C, Zhao X, Fang P (2014) Evolution of microstructure of epoxy coating during UV degradation progress studied by slow positron annihilation spectroscopy and electrochemical impedance spectroscopy. Electrochim Acta 133:283CrossRefGoogle Scholar
  25. 25.
    Hu JM, Zhang JT, Zhang JQ, Cao CN (2004) A novel method for determination of diffusion coefficient of corrosive species in organic coatings by EIS. J Mater Sci 39(14):4475. CrossRefGoogle Scholar
  26. 26.
    Larson BJ, Gillmor SD, Braun JM, Cruz-Barba LE, Savage DE, Denes FS, Lagally MG (2013) Long-term reduction in poly (dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir 29(42):12990CrossRefGoogle Scholar
  27. 27.
    Hollahan JR, Carlson GL (1970) Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas. J Appl Polym Sci 14(10):2499CrossRefGoogle Scholar
  28. 28.
    Hillborg H, Sandelin M, Gedde UW (2001) Hydrophobic recovery of polydimethylsioxane after exposure to partial discharges as a function of crosslink density. Polymer 42(17):7349CrossRefGoogle Scholar
  29. 29.
    Zhang JT, Hu JM, Zhang JQ, Cao CN (2004) Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS. Prog Org Coat 51(2):145CrossRefGoogle Scholar
  30. 30.
    Zhang JT, Hu JM, Zhang JQ, Cao CN (2004) Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Prog Org Coat 49(4):293CrossRefGoogle Scholar
  31. 31.
    Amirudin A, Thieny D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1CrossRefGoogle Scholar
  32. 32.
    Mansfeld F, Tsai CH (1991) Determination of coating deterioration with EIS: I. Basic relationships. Corrosion 47(12):958CrossRefGoogle Scholar
  33. 33.
    Murray JN (1997) Electrochemical test methods for evaluating organic coatings on metals: an update. Part III: multiple test parameter measurements. Prog Org Coat 31(3):255CrossRefGoogle Scholar
  34. 34.
    Cano E, Lafuente D, Bastidas DM (2010) Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. J Solid State Electrochem 14(3):381CrossRefGoogle Scholar
  35. 35.
    Senkevich JJ (2000) Degradation of an alkyd polymer coating characterized by AC impedance. J Mater Sci 35(6):1359. CrossRefGoogle Scholar
  36. 36.
    Kolek Z (1997) Characterization of water penetration inside organic coatings by capacitance measurements. Prog Org Coat 30(4):287CrossRefGoogle Scholar
  37. 37.
    Hsu CH, Mansfeld F (2001) Technical note: concerning the conversion of the constant phase element parameter \(\text{ Y }_{0}\) into a capacitance. Corrosion 57(9):747CrossRefGoogle Scholar
  38. 38.
    Castela AS, Simoes AM, Ferreira MGS (2000) EIS evaluation of attached and free polymer films. Prog Org Coat 38(1):1CrossRefGoogle Scholar
  39. 39.
    Deflorian F, Fedrizzi L, Bonora P (1996) Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints. Corros Sci 38(10):1697CrossRefGoogle Scholar
  40. 40.
    Liu B, Li Y, Lin H, Cao C (2002) Effect of PVC on the diffusion behaviour of water through alkyd coatings. Corros Sci 44(12):2657CrossRefGoogle Scholar
  41. 41.
    Bellucci F, Nicodemo L, Monetta T, Kloppers MJ, Latanision RM (1992) A study of corrosion initiation on polyimide coatings. Corros Sci 33(8):1203CrossRefGoogle Scholar
  42. 42.
    Deflorian F, Fedrizzi L, Bonora PL (1996) Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints. Corros Sci 38(10):1697CrossRefGoogle Scholar
  43. 43.
    Zhang H, Zheng W, Yan Q, Yang Y, Wang J, Lu Z, Ji G, Yu Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191CrossRefGoogle Scholar
  44. 44.
    Saberi AA (2015) Recent advances in percolation theory and its applications. Phys Rep 578:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Hubei Nuclear-Solid Physics Key LaboratoryWuhan UniversityWuhanChina

Personalised recommendations