Skip to main content

Advertisement

Log in

Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single-phase nanocrystallites synthesized via sucrose-assisted sol–gel combustion method

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A pure phase of nanocrystalline ferroelectric of calcium bismuth niobate (CaBi2Nb2O9, CBNO) has been synthesized via sucrose-assisted sol–gel combustion method. It was prepared using calcium nitrate, bismuth nitrate pentahydrate, and niobium pentoxide in the presence of sucrose. The prepared CBNO powder ceramics were calcined at different temperatures to ensure formation of single-phasic nanocrystallites. X-ray diffraction, selected area electron diffraction, and high-resolution transmission electron microscopy were employed to study the structural properties and to verify the single-phase nanocrystalline formation, which was found at calcining temperature of 1200 °C. Then, thermogravimetric analysis, differential scanning calorimetry, and Fourier-transform infrared were utilized to characterize thermal stability and functional groups of the prepared pure orthorhombic phase of CBNO nanocrystalline ceramics. Moreover, electrical properties of the prepared CBNO powder were rigorously investigated in air with frequencies and temperatures ranges of 1 kHz–8 MHz and 300–1000 °C, respectively. The electrical results were interpreted depending on the bipolaron and single-polaron-correlated barrier height mechanisms. The prepared pure orthorhombic phase possesses high stability and has Curie temperature at about 932 °C, which makes this material promising for working as a resonator for high-temperature operations, for example, automotive engine control application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gautam CR, Singh P, Thakur OP, Kumar D, Parkash O (2012) Synthesis, structure and impedance spectroscopic analysis of [(PbxSr1−x)OTiO2]–[(2SiO2B2O3)]–7[BaO]–3[K2O] glass ceramic system doped with La2O3. J Mater Sci 47(18):6652–6664. https://doi.org/10.1007/s10853-012-6602-0

    Article  CAS  Google Scholar 

  2. Aurivillius B (1949) Mixed bismuth oxides with layer lattices II. Structure of Bi4Ti3O12. Ark fur Kemi 58:499–512

    Google Scholar 

  3. Kumar S, Varma KBR (2011) Crystal structure and electrical properties of CaNaBi2Nb3O12 ceramics. J Mater Sci 46:2606–2610. https://doi.org/10.1007/s10853-010-5114-z

    Article  CAS  Google Scholar 

  4. Gupta HC, Archana, Luthra V (2011) Lattice vibrations of ABi2Nb2O9 crystals (A = Ca, Sr, Ba). Vib Spectrosc 56(2):235–240

    Article  CAS  Google Scholar 

  5. Abdel-Khalek EK, Salem SM, Kashif I (2012) Synthesis, crystal structure and ferroelectric properties of SrBi2Nb2O9 embedded in a 50% Li2B4O7 glass matrix. J Electroceram 29(3):171–178

    Article  CAS  Google Scholar 

  6. Zhang X, Yan H, Reece MJ (2008) Effect of A site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J Am Ceram Soc 91(9):2928–2932

    Article  CAS  Google Scholar 

  7. Chen H, Guo X, Cui Z, Zhai J (2013) Donor and acceptor doping effects on the electrical conductivity of CaBi2Nb2O9 ceramics. Phys Status Solidi A Appl Mater Sci 210(6):1121–1127

    Article  CAS  Google Scholar 

  8. Chen H, Zhai J, Guo X, Cui Z (2013) Effects of A-site Sm substitution and textured structure on electric properties of CaBi2Nb2O9-based high-Curie-temperature ceramics. Int J Appl Ceram Technol 10:E151–E158

    Article  CAS  Google Scholar 

  9. Zou H, Hu Y, Zhu X, Peng D, Chai X, Wang X, Liu B, Shen D (2017) Upconversion photoluminescence properties of Er3+ doped CaBi2Nb2O9 phosphors for temperature sensing. J Mater Sci Mater Electron 28(16):11921–11925

    Article  CAS  Google Scholar 

  10. Gaikwad SP, Dhesphande SB, Khollam YB, Samuel V, Ravi V (2004) Coprecipitation method for the preparation of nanocrystalline ferroelectric CaBi2Ta2O9. Mater Lett 58(27–28):3474–3476

    Article  CAS  Google Scholar 

  11. Yin S, Chen D, Tang W, Yuan Y (2007) Synthesis of CaTiO3: Pr, Al phosphors by sol–gel method and their luminescence properties. J Mater Sci 42(8):2886–2890. https://doi.org/10.1007/s10853-007-1655-1

    Article  CAS  Google Scholar 

  12. Jalled O, Alharbi Z, Alharbi SR et al (2017) Synthesis and dielectric properties of nanocrystalline strontium bismuth niobate. J Nanosci Nanotechnol 17(1):594–600

    Article  CAS  Google Scholar 

  13. Halim SA, Saleh A, Azhan H, Mohamed SB, Khalid K, Suradi J (2000) Synthesis of Bi1.5Pb0.5Sr2Ca2Cu3Oy via sol–gel method using different acetate-derived precursors. J Mater Sci 35(12):3043–3046. https://doi.org/10.1023/A:1004811731478

    Article  CAS  Google Scholar 

  14. Wang J, Luo H, Gao N, Liu Y (1996) The preparation and magnetic properties of Fe–Ag granular solid using a sol–gel method. J Mater Sci 31(3):727–730. https://doi.org/10.1007/BF00367892

    Article  CAS  Google Scholar 

  15. Sharma PK, Ramanan A (1996) The role of N,N-dimethylaniline in the formation of titania gel monolith by sol–gel method. J Mater Sci 31(3):773–777. https://doi.org/10.1007/BF00367898

    Article  CAS  Google Scholar 

  16. Lv Y-, Cao L, Li X et al (2017) Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals. Sci Rep. https://doi.org/10.1038/srep44587

    Article  Google Scholar 

  17. Asadabad MA, Eskandari MJ (2016) Electron diffraction. In: Janecek N, Kral R (eds) Modern electron microscopy in physical and life sciences. Intech, Rijeka, pp 3–25

    Google Scholar 

  18. Park CO, Akbar SA (2003) Ceramics for chemical sensing. J Mater Sci 38(23):4611–4637. https://doi.org/10.1023/A:1027402430153

    Article  CAS  Google Scholar 

  19. Ren P, Fan H, Wang X (2013) Impedance spectroscopy studies of bulk electrical conduction in A-site acceptor (K)-doped BaTiO3. J Mater Sci 48(20):7028–7035. https://doi.org/10.1007/s10853-013-7513-4

    Article  CAS  Google Scholar 

  20. Kumar A, Choudhary RNP (2007) Characterization of electrical behaviour of Si modified BaSnO3 electroceramics using impedance analysis. J Mater Sci 42(7):2476–2485. https://doi.org/10.1007/s10853-006-0804-2

    Article  CAS  Google Scholar 

  21. Murugaraj R, Govindaraj G, Suganthi R, George D (2003) Electrical conductivity studies of sodium borate system based on diffusion controlled relaxation model. J Mater Sci 38(1):107–112. https://doi.org/10.1023/A:1021170017560

    Article  CAS  Google Scholar 

  22. Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hopping rates from a.c. conductivity data. J Mater Sci 19(10):3236–3248. https://doi.org/10.1007/BF00549810

    Article  CAS  Google Scholar 

  23. Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. Solid State Phys Adv Res Appl 3(C):307–435

    Google Scholar 

  24. Teo LP, Buraidah MH, Nor AFM, Majid SR (2012) Conductivity and dielectric studies of Li2SnO3. Ionics 18:655–665

    Article  CAS  Google Scholar 

  25. Verma R, Tiwari SP, Kumari R, Srivastava R (2018) Study of enhancement in the dielectric and electrical properties of WO3-doped LiF nano-composite. J Mater Sci 53(6):4199–4208. https://doi.org/10.1007/s10853-017-1870-3

    Article  CAS  Google Scholar 

  26. Salem SM, Antar EM, Mostafa AG, Salem SM, El-Badry SA (2011) Compositional dependence of the structural and dielectric properties of Li2O–GeO2–ZnO–Bi2O3–Fe2O3 glasses. J Mater Sci 46(5):1295–1304. https://doi.org/10.1007/s10853-010-4915-4

    Article  CAS  Google Scholar 

  27. Philip J, Rodrigues N, Sadhukhan M, Bera AK, Chaudhuri BK (2000) Temperature dependence of elastic and dielectric properties of (Bi2O3)1−x(CuO)x oxide glasses. J Mater Sci 35(1):229–233. https://doi.org/10.1023/A:1004785809370

    Article  CAS  Google Scholar 

  28. Patra A, Bisoyi DK (2010) Dielectric and impedance spectroscopy studies on sisal fibre-reinforced polyester composite. J Mater Sci 45(21):5742–5748. https://doi.org/10.1007/s10853-010-4644-8

    Article  CAS  Google Scholar 

  29. Delixiati A, Chung DDL (2016) Bentonite-derived materials preferably with nanocarbon incorporation exhibiting exceptionally high dielectric loss at relatively low electrical conductivity. J Mater Sci 51(2):969–978. https://doi.org/10.1007/s10853-015-9426-x

    Article  CAS  Google Scholar 

  30. Jacob M, Varughese KT, Thomas S (2006) Dielectric characteristics of sisal–oil palm hybrid biofibre reinforced natural rubber biocomposites. J Mater Sci 41(17):5538–5547. https://doi.org/10.1007/s10853-006-0298-y

    Article  CAS  Google Scholar 

  31. Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  32. Funke K, Roling B, Lange M (1998) (1998) Dynamics of mobile ions in crystals, glasses and melts. Solid State Ion 105(1–4):195–208

    Article  CAS  Google Scholar 

  33. Elliott SR (1977) A theory of a.c. conduction in chalcogenide glasses. Philos Mag 36(6):1291–1304

    Article  CAS  Google Scholar 

  34. Pike GE (1972) Ac conductivity of scandium oxide and a new hopping model for conductivity. Phys Rev B 6(4):1572–1580

    Article  CAS  Google Scholar 

  35. Chaudhuri BK, Chaudhuri K, Som KK (1989) Concentration dependences of D.C. conductivity of the iron-bismuth oxide glasses-I. J Phys Chem Solids 50(11):1137–1147

    Article  CAS  Google Scholar 

  36. Sayer M, Mansingh A, Webb JB, Noad J (1978) Long-range potential centres in disordered solids. J Phys C Solid State Phys 11(2):315–329

    Article  CAS  Google Scholar 

  37. Shimakawa K (1981) Contribution of single polaron hopping to ac conduction in amorphous chalcogenides. J Phys Colloq 42(C4):167–170

    Article  Google Scholar 

  38. Chen H, Shen B, Xu J, Zhai J (2013) A combination method for improving electrical property of calcium bismuth niobate ceramics. J Electroceram 30(3):133–138

    Article  CAS  Google Scholar 

  39. Chen H, Shen B, Xu J, Kong L, Zhai J (2012) Correlation between grain sizes and electrical properties of CaBi2Nb2O9 piezoelectric ceramics. J Am Ceram Soc 95(11):3514–3518

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by King Abdulaziz City for Science and Technology (KACST) under Grant Number A-S-36-218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saeed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, S.R., Alhassan, M., Jalled, O. et al. Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single-phase nanocrystallites synthesized via sucrose-assisted sol–gel combustion method. J Mater Sci 53, 11584–11594 (2018). https://doi.org/10.1007/s10853-018-2458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2458-2

Keywords

Navigation