Advertisement

Journal of Materials Science

, Volume 53, Issue 16, pp 11562–11573 | Cite as

Effect of Ag doping on structural, optical and electrical properties of antimony sulfide thin films

  • C. J. Diliegros-Godines
  • J. Santos Cruz
  • N. R. Mathews
  • Mou Pal
Electronic materials
  • 180 Downloads

Abstract

This work reveals the effect of silver doping on structural, optical and electrical properties of Sb2S3 films grown by a citrate-mediated chemical bath deposition technique. The silver content in solution was 7.5 mol% with respect to Sb3+ ions. The films were deposited in a cold bath for four hours and subjected to thermal treatment in a N2 atmosphere at 300 °C for 1 h. Polycrystalline nature of Sb2S3 films with orthorhombic phase was confirmed in both undoped and Ag-doped samples by X-ray diffraction technique and Raman spectroscopy. Scanning electron microscopy imaging showed the presence of irregular-shaped interconnected particulate grains in the undoped films, while nearly spherical clusters of smaller grain size were observed for Ag-doped Sb2S3 films. X-ray photoelectron spectroscopy results revealed the incorporation of metallic Ag into the Sb2S3 lattice. A detailed growth mechanism has been proposed for the formation of Sb2S3 and incorporation of metallic silver in the host matrix. The optical properties were recorded by UV–Vis diffuse reflectance spectroscopy. The inclusion of Ag in Sb2S3 films causes a red shift in band gap values from 1.75 to 1.66 eV. The dark resistivity of Sb2S3 films was decreased by one order on silver doping.

Notes

Acknowledgements

The authors are sincerely thankful to Dr. R. Silva Gonzalez for extending the facilities for SEM and EDS measurements. The authors acknowledge the grants received through the projects CONACyT-DST Bilateral 2015 (#266406) & PAPIIT (IN107815). Dr. C. J. Diliegros-Godines acknowledges the postdoctoral fellowship obtained through SEP-PRODEP (# 511-6/18-829).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Varghese J, Barth S, Keeney L, Whatmore RW, Holmes JD (2012) Nanoscale ferroelectric and piezoelectric properties of Sb2S3 nanowire arrays. Nano Lett 12:868–872.  https://doi.org/10.1021/nl2039106 CrossRefGoogle Scholar
  2. 2.
    Chao J, Liang B, Hou X et al (2013) Selective synthesis of Sb2S3 nanoneedles and nanoflowers for high performance rigid and flexible photodetectors. Opt Express 21:13639–13647.  https://doi.org/10.1364/OE.21.013639 CrossRefGoogle Scholar
  3. 3.
    Yesugade NS, Lokhande CD, Bhosale CH (1995) Structural and optical properties of electrodeposited Bi2S3, Sb2S3 and As2S3 thin films. Thin Solid Films 263:145–149.  https://doi.org/10.1016/0040-6090(95)06577-6 CrossRefGoogle Scholar
  4. 4.
    Aousgi F, Kanzari M (2011) Study of the optical properties of Sn-doped Sb2S3 thin films. Energy Proc 10:313–322.  https://doi.org/10.1016/j.egypro.2011.10.197 CrossRefGoogle Scholar
  5. 5.
    Krishnan B, Arato A, Cardenas E, Das Roy TK, Castillo GA (2008) On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films. Appl Surf Sci 254:3200–3206.  https://doi.org/10.1016/j.apsusc.2007.10.098 CrossRefGoogle Scholar
  6. 6.
    Gil EK, Lee SJ, Sung SJ, Cho KY, Kim DH (2016) Spin-coating process of an inorganic Sb2S3 thin film for photovoltaic applications. J Nanosci Nanotechnol 16:10763–10766.  https://doi.org/10.1166/jnn.2016.13235 CrossRefGoogle Scholar
  7. 7.
    Savadogo O, Mandal KC (1994) Low cost Schottky barrier solar cells fabricated on CdSe and Sb2S3 films chemically deposited with silicotungstic acid. J Electrochem Soc 141:2871–2877.  https://doi.org/10.1149/1.2059248 CrossRefGoogle Scholar
  8. 8.
    Abulikemu M, Del Gobbo S, Anjum DH, Malik MA, Bakr OM (2016) Colloidal Sb2S3 nanocrystals: synthesis, characterization and fabrication of solid-state semiconductor sensitized solar cells. J Mater Chem A 4:6809–6814.  https://doi.org/10.1039/C5TA09546H CrossRefGoogle Scholar
  9. 9.
    Itzhaik Y, Niitsoo O, Page M, Hodes G (2009) Sb2S3-sensitized nanoporous TiO2 solar cells. J Phys Chem C 113:4254–4256.  https://doi.org/10.1021/jp900302b CrossRefGoogle Scholar
  10. 10.
    Cardoso JC, Grimes CA, Feng X et al (2012) Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic–inorganic thin film photovoltaics. Chem Commun 48:2818–2820.  https://doi.org/10.1039/c2cc17573h CrossRefGoogle Scholar
  11. 11.
    Moon SJ, Itzhaik Y, Yum JH et al (2010) Sb2S3-Based mesoscopic solar cell using an organic hole conductor. J Phys Chem Lett 1:1524–1527.  https://doi.org/10.1021/jz100308q CrossRefGoogle Scholar
  12. 12.
    DeAngelis AD, Kemp KC, Gaillard N, Kim KS (2016) Antimony (III) sulfide thin Films as a photoanode material in photocatalytic water splitting. ACS Appl Mater Interfaces 8:8445–8451.  https://doi.org/10.1021/acsami.5b12178 CrossRefGoogle Scholar
  13. 13.
    Choi YC, Seok SI (2015) Efficient Sb2S3-sensitized solar cells via single-step deposition of Sb2S3 using S/Sb-ratio-controlled SbCl3-thiourea complex solution. Adv Funct Mater 25:2892–2898.  https://doi.org/10.1002/adfm.201500296 CrossRefGoogle Scholar
  14. 14.
    Karguppikar AM, Vedeshwar AG (1987) Thickness dependence of the forbidden energy gap in stibnite (Sb2S3) thin films. Phys Lett A 126:123–126.  https://doi.org/10.1016/0375-9601(87)90570-6 CrossRefGoogle Scholar
  15. 15.
    Salim SM, Seddek MB, Salem, Islam AM (2010) Low-temperature synthesis of Ag-doped Sb2S3 thin films and its characterization. Appl Sci Res 6:1352–1358Google Scholar
  16. 16.
    Dong W, Krbal M, Kalikka J et al (2016) Enhanced Sb2S3 crystallisation by electric field induced silver doping. Thin Solid Films 616:80–85.  https://doi.org/10.1016/j.tsf.2016.07.068 CrossRefGoogle Scholar
  17. 17.
    Mushtaq S, Ismail B, Aurang Zeb M, Suthan Kissinger NJ, Zeb A (2015) Low-temperature synthesis and characterization of Sn-doped Sb2S3 thin film for solar cell applications. J Alloys Compd 632:723–728.  https://doi.org/10.1016/j.jallcom.2015.01.307 CrossRefGoogle Scholar
  18. 18.
    Cárdenas E, Arato A, Perez-Tijerina E, Das Roy TK, Alan Castillo G, Krishnan B (2009) Carbon-doped Sb2S3 thin films: structural, optical and electrical properties. Sol Energy Mater Sol Cells 93:33–36.  https://doi.org/10.1016/j.solmat.2008.02.026 CrossRefGoogle Scholar
  19. 19.
    Mushtaq S, Ismail B, Raheel M, Zeb A (2016) Nickel antimony sulphide thin films for solar cell application: study of optical constants. Nat Sci 8:33–40.  https://doi.org/10.4236/ns.2016.82004 Google Scholar
  20. 20.
    Mitkova M, Sakaguchi Y, Tenne D, Bhagat SK, Alford TL (2010) Structural details of Ge-rich and silver-doped chalcogenide glasses for nanoionic nonvolatile memory. Phys Status Solidi Appl Mater Sci 207:621–626.  https://doi.org/10.1002/pssa.200982902 CrossRefGoogle Scholar
  21. 21.
    Kosa TI, Rangel-Rojo R, Hajto E et al (1993) Nonlinear optical properties of silver-doped As2S3. J Non Cryst Solids 164–166:1219–1222.  https://doi.org/10.1016/0022-3093(93)91220-W CrossRefGoogle Scholar
  22. 22.
    Duan Y, Fu N, Liu Q et al (2012) Sn-doped TiO2 photoanode for dye-sensitized solar cells. J Phys Chem C 116:8888–8893.  https://doi.org/10.1071/CH11031 CrossRefGoogle Scholar
  23. 23.
    Wang XB, Song C, Geng KW, Zeng F, Pan F (2006) Luminescence and Raman scattering properties of Ag-doped ZnO films. J Phys D Appl Phys 39:4992–4996.  https://doi.org/10.1088/0022-3727/39/23/014 CrossRefGoogle Scholar
  24. 24.
    Kumar M, Kumar A, Abhyankar AC (2015) Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films. ACS Appl Mater Interfaces 7:3571–3580.  https://doi.org/10.1021/am507397z CrossRefGoogle Scholar
  25. 25.
    Shaji S, Garcia LV, Loredo SL et al (2017) Antimony sulfide thin films prepared by laser assisted chemical bath deposition. Appl Surf Sci 393:369–376.  https://doi.org/10.1016/j.apsusc.2016.10.051 CrossRefGoogle Scholar
  26. 26.
    Pal M, Mathews NR, Mathew X (2017) Surfactant-mediated self-assembly of Sb2S3 nanorods during hydrothermal synthesis. J Mater Res 32:530–538.  https://doi.org/10.1557/jmr.2016.470 CrossRefGoogle Scholar
  27. 27.
    Makreski P, Petruševski G, Ugarković S, Jovanovski G (2013) Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts. Vib Spectrosc 68:177–182.  https://doi.org/10.1016/j.vibspec.2013.07.007 CrossRefGoogle Scholar
  28. 28.
    Galdámez A, López-Vergara F, Veloso Cid N et al (2014) Copper substitutions in synthetic miargyrite α-AgSbS2 mineral: synthesis, characterization and dielectrical properties. Mater Chem Phys 143:1372–1377.  https://doi.org/10.1016/j.matchemphys.2013.11.048 CrossRefGoogle Scholar
  29. 29.
    Sarica E, Bilgin V (2017) Study of some physical properties of ultrasonically spray deposited silver doped lead sulphide thin films. Mater Sci Semicond Process 68:288–294.  https://doi.org/10.1016/j.mssp.2017.06.034 CrossRefGoogle Scholar
  30. 30.
    Gedi S, Minnam Reddy VR, Reddy Kotte TR, Kim SH, Jeon CW (2016) Chemically synthesized Ag-doped SnS films for PV applications. Ceram Int 42:19027–19035.  https://doi.org/10.1016/j.ceramint.2016.09.059 CrossRefGoogle Scholar
  31. 31.
    Han Q, Chen L, Zhu W et al (2009) Synthesis of Sb2S3 peanut-shaped superstructures. Mater Lett 63:1030–1032.  https://doi.org/10.1016/j.matlet.2009.01.078 CrossRefGoogle Scholar
  32. 32.
    Avilez Garcia RG, Meza Avendaño CA, Pal M, Paraguay Delgado F, Mathews NR (2016) Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater Sci Semicond Process 44:91–100.  https://doi.org/10.1016/j.mssp.2015.12.018 CrossRefGoogle Scholar
  33. 33.
    Moulder J, Stickie W, Sobal P, Bomber K (1992) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden PrairieGoogle Scholar
  34. 34.
    Deng Z, Chen D, Tang F, Ren J, Muscat AJ (2009) Synthesis and purple-blue emission of antimony trioxide single-crystalline nanobelts with elliptical cross section. Nano Res 2:151–160.  https://doi.org/10.1007/s12274-009-9014-y CrossRefGoogle Scholar
  35. 35.
    Ornelas-Acosta RE, Shaji S, Avellaneda D, Castillo GA, Das Roy TK (2015) Thin films of copper antimony sulfide: a photovoltaic absorber material. Mater Res Bull 61:215–225.  https://doi.org/10.1016/j.materresbull.2014.10.027 CrossRefGoogle Scholar
  36. 36.
    Loranca-Ramos FE, Diliegros-Godines CJ, Silva González R, Pal M (2018) Structural, optical and electrical properties of copper antimony sulfide thin films grown by a citrate-assisted single chemical bath deposition. Appl Surf Sci 427:1099–1106.  https://doi.org/10.1016/j.apsusc.2017.08.027 CrossRefGoogle Scholar
  37. 37.
    Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951.  https://doi.org/10.1021/jp037018r CrossRefGoogle Scholar
  38. 38.
    Gong G, Liu Y, Mao B, Tan L, Yang Y, Shi W (2017) Ag doping of Zn-In-S quantum dots for photocatalytic hydrogen evolution: simultaneous bandgap narrowing and carrier lifetime elongation. Appl Catal B Environ 216:11–19.  https://doi.org/10.1016/j.apcatb.2017.05.050 CrossRefGoogle Scholar
  39. 39.
    Sotelo Marquina RG, Sanchez TG, Mathews NR, Mathew X (2017) Vacuum coated Sb2S3 thin films: thermal treatment and the evolution of its physical properties. Mater Res Bull 90:285–294.  https://doi.org/10.1016/j.materresbull.2017.03.013 CrossRefGoogle Scholar
  40. 40.
    Desai JD, Lokhande CD (1994) Alkaline bath chemical deposition of antimony (III) sulphide thin films. Thin Solid Films 237:29–31.  https://doi.org/10.1016/0040-6090(94)90234-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física, BUAPPueblaMexico
  2. 2.Facultad de Química, Materiales-EnergíaUniversidad Autónoma de QuerétaroSantiago de QuerétaroMexico
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations