Skip to main content

Advertisement

Log in

Enhancement of electrochemical performance of lithium-ion battery by single-ion conducting polymer addition in ceramic-coated separator

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single-ion conducting polymers have been widely reported in the literature as solid polymer electrolytes, but their low ionic conductivity has limited industrial applications at ambient temperature. Here, we employed a perfluoroalkyl sulfonamide-based single-ion conducting polymer-lithiated poly(perfluoroalkylsulfonyl)imide (LiPFSI) to promote the migration of free Li-ions and diminish cell polarization in lithium-ion batteries. After blending with Al2O3 powder, the LiPFSI/Al2O3 composite was coated on a commercial polyethylene separator. Adding the high surface energy of Al2O3 particles and the exceptional ionic conductivity of LiPFSI resulted in a LiPFSI/Al2O3 composite-coated separator with excellent wettability and low impedance. A LiFePO4/Li half-cell with this separator showed a highly improved charge–discharge cyclability up to 130 mAh/g that maintained 98% retention of the original reversible capacity after 220 charge–discharge cycles at a high current rate of 2 C (1 C = 170 mAh/g). Even at a high rate of 5 C, the cell capacity could be maintained above 100 mAh/g. Herein, we present a simple and effective method to optimize the separator with the LiPFSI/Al2O3 composite and thus improve the high rate charge–discharge performance of Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:243–3262

    Article  Google Scholar 

  3. Scrosati B, Hassounab J, Sun YK (2011) Lithium-ion batteries. a look into the future. Energy Environ Sci 4:3287–3295

    Article  Google Scholar 

  4. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  Google Scholar 

  5. Pereira JN, Costa CM, Mendez SL (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398

    Article  Google Scholar 

  6. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886

    Article  Google Scholar 

  7. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  Google Scholar 

  8. Zhang Y, Wang Z, Xiang H, Shi P, Wang H (2016) A thin inorganic composite separator for lithium-ion batteries. J Membr Sci 509:19–26

    Article  Google Scholar 

  9. Fang J, Kelarakis A, Lin YW, Kang CY, Yang MH, Cheng CL, Wang Y, Giannelis EP, Tsai LD (2011) Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Phys Chem Chem Phys 13:14457–14461

    Article  Google Scholar 

  10. Li B, Li Y, Dai D, Chang K, Tang H, Chang Z, Wang C, Yuan X, Wang H (2015) Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl Mater Interfaces 7:20184–20189

    Article  Google Scholar 

  11. Lee JY, Lee YM, Bhattacharya B, Nho YC, Park JK (2009) Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta 54:4312–4315

    Article  Google Scholar 

  12. Ryou MH, Lee Y, Park JK, Choi J (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv Mater 23:3066–3070

    Article  Google Scholar 

  13. Kim JY, Lee Y, Lim DY (2009) Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery. Electrochim Acta 54:3714–3719

    Article  Google Scholar 

  14. Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134

    Article  Google Scholar 

  15. Cheruvally G, Kima JK, Choi JW, Ahn JH, Shin YJ, Manuel J, Raghavan P, Kim KW, Ahn HJ, Choi DS, Song CE (2007) Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries. J Power Sources 172:863–869

    Article  Google Scholar 

  16. Liu K, Liu W, Qiu Y, Kong B, Sun Y, Chen Z, Zhuo D, Lin D, Cui Y (2017) Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci Adv 3:e1601978

    Article  Google Scholar 

  17. Zhu X, Jiang X, Ai X, Yang H, Cao Y (2005) A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl Mater Interfaces 7:24119–24126

    Article  Google Scholar 

  18. Jeong H S, Lee S Y (2011) Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J Power Source 196:6716-6722

  19. Jung YS, Cavanagh AS, Gedvilas L, Widjonarko NE, Scott ID, Lee SH, Kim GH, George SM, Dillon AC (2012) Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv Energy Mater 2:1022–1027

    Article  Google Scholar 

  20. Choi J, Kim SH, Kim DW (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195:6192–6196

    Article  Google Scholar 

  21. Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333

    Article  Google Scholar 

  22. Choi ES, Lee SY (2011) Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J Mater Chem 21:14747–14754

    Article  Google Scholar 

  23. Ma Q, Zhang H, Zhou CW, Zheng LP, Cheng PF, Nie J, Feng WF, Hu YS, Li H, Huang XJ, Chen LQ, Armand M, Zhou ZB (2016) A single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed 55:2521–2525

    Article  Google Scholar 

  24. Porcarelli L, Shaplov AS, Salsamendi M, Nair JR, Vygodskii YS, Mecerreyes D, Gerbaldi C (2016) Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl Mater Interfaces 8:10350–10359

    Article  Google Scholar 

  25. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Phan NT, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12:452–457

    Article  Google Scholar 

  26. Bernhard R, Latini A, Panero S, Scrosati B, Hassoun J (2013) Poly(ethylenglycol)dimethylether–lithium bis(trifluoromethanesulfonyl)imide, PEG500DME-LiTFSI, as high viscosity electrolyte for lithium ion batteries. J Power Sources 226:329–333

    Article  Google Scholar 

  27. Shi Q, Xue L, Wei Z, Liu F, Du X, DesMarteau DD (2013) Improvement in LiFePO4–Li battery performance via poly(perfluoroalkylsulfonyl)imide (PFSI) based ionene composite binder. J Mater Chem A 1:15016–15021

    Article  Google Scholar 

  28. Cao C, Li Y, Feng Y, Long P, An H, Qin C, Han J, Li S, Feng W (2017) A sulfonimide-based alternating copolymer as a single-ion polymer electrolyte for high-performance lithium-ion batteries. J Mater Chem A 5:22519–22526

    Article  Google Scholar 

  29. Strauss E, Menkin S, Golodnitsky D (2017) On the way to high-conductivity single lithium-ion conductors. J Solid State Electrochem 21(1):1–27

    Article  Google Scholar 

  30. Li J, Huang Y, Zhang S, Jia W, Wang X, Guo T (2017) Decoration of silica nanoparticles on polypropylene separator for lithium–sulfur batteries. ACS Appl Mater Interfaces 9:7499–7504

    Article  Google Scholar 

  31. Xue L, DesMarteau DD, Pennington WT (1997) Perfectly staggered and twisted difluoromethylene groups in perfluoroalkyl chains: structure of M[C4F9SO2NSO2C4F9] (M = Na+, K+). Angew Chem Int Ed 36:1331–1333

    Article  Google Scholar 

  32. Wei Z, Xue L, Nie F, Sheng J, Shi Q, Zhao X (2014) Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conducting binder in lithium-ion batteries. J Power Sources 256:28–31

    Article  Google Scholar 

  33. Qin D, Xue L, Du B, Wang J, Nie F, Wen L (2015) Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries. J Mater Chem A 3:10928–10934

    Article  Google Scholar 

  34. Shi Q, Xue L, Qin D, Du B, Wang J, Chen L (2014) Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)-imide ionene polymer. J Mater Chem A 2:15952–15957

    Article  Google Scholar 

  35. Bruce PG, Vincent CA (1978) Steady-state current flow in solid binary electrolyte cells. J Electroanal Chem 225:1–17

    Article  Google Scholar 

  36. Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtissb LA, Aminead K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ Sci 6:1806–1810

    Article  Google Scholar 

  37. Jin Z, Xie K, Hong X (2013) Synthesis and electrochemical properties of a perfluorinated ionomer with lithium sulfonyl dicyanomethide functional groups. J Mater Chem A 1:342–347

    Article  Google Scholar 

  38. Mostafavi M, Douki T (2008) Radiation chemistry: from basics to applications in material and life science. EDP Sciences, Les Ulis

    Google Scholar 

  39. Zhu Y, Wang F, Liu L, Xiao S, Chang Z, Wu Y (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy Environ Sci 6:618–624

    Article  Google Scholar 

  40. Yanilmaz M, Lu Y, Dirican M, Fu K, Zhang X (2014) Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. J Membr Sci 456:57–65

    Article  Google Scholar 

  41. Diederichsen KM, McShane EJ, McClosky BD (2017) Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett 2:2563–2575

    Article  Google Scholar 

  42. Zhang X, Li Y, Khan SA, Fedkiw PS (2004) Inhibition of lithium dendrites by fumed silica-based composite electrolytes. J Electrochem Soc 151:A1257–A1263

    Article  Google Scholar 

  43. Kim KJ, Park MS, Yim T, Yu JS, Kim YJ (2014) Electron beam-irradiated polyethylene membrane with improved electrochemical and thermal properties for lithium-ion batteries. J Appl Electrochem 44:345–352

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Advanced Lithium-Ion Batteries Engineering Laboratory in Ningbo, the Institute of Material Technology & Engineering for the supplement of LiFeO4. This work was supported by Natural Science Foundation of Zhejiang Province (No. LY15B020003) and Ningbo Natural Science Foundation (No. 2015A610243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lele Wen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Qin, D., Nie, F. et al. Enhancement of electrochemical performance of lithium-ion battery by single-ion conducting polymer addition in ceramic-coated separator. J Mater Sci 53, 11038–11049 (2018). https://doi.org/10.1007/s10853-018-2353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2353-x

Keywords

Navigation