Skip to main content

Advertisement

Log in

Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid membranes represent an efficient approach to construct membranes with both improved membrane flux and solute selectivity. Zwitterions bearing equimolar number of anions and cations in one monomer unit exhibit excellent anti-fouling characteristics. Based on the exceptional separation performance of hybrid membrane and fouling resistance feature of zwitterions, a novel nanofiltration membrane was fabricated by incorporating zwitterionic functionalized titanium nanotubes (z-TNTs) into polyamide (PA) layer. The special tubular structure of z-TNTs can provide more and shorter internal channels to shorten flow lanes for water molecules. The zwitterionic functionalization on the titanium nanotubes surface improved not only the interfacial compatibility between nano-materials and polymer matrix but also the antifouling performance of membranes. The water flux of membrane prepared with z-TNTs was up to 220 L m−2 h−1 MPa−1 while the Na2SO4 rejection remained above 90%. The as-prepared z-TNTs/PA membrane exhibited improved anti-fouling property against protein with a notably reduced flux decline ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. van Reis R, Zydney A (2007) Bioprocess membrane technology. J Membr Sci 297:16–50

    Article  Google Scholar 

  2. Van der Bruggen B, Schaep J, Wilms D et al (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J Membr Sci 156:29–41

    Article  Google Scholar 

  3. Fu H, Kobayashi T (2010) Self-assembly functionalized membranes with chitosan microsphere/polyacrylic acid layers and its application for metal ion removal. J Mater Sci 45:6694–6700. https://doi.org/10.1007/s10853-010-4762-3

    Article  Google Scholar 

  4. Wang J, Zhang Y, Zhu J et al (2016) Zwitterionic functionalized layered double hydroxides nanosheets for a novel charged mosaic membrane with high salt permeability. J Membr Sci 510:27–37

    Article  Google Scholar 

  5. Zuo G, Wang R (2013) Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J Membr Sci 447:26–35

    Article  Google Scholar 

  6. Ghanbari M, Emadzadeh D, Lau WJ et al (2015) Super hydrophilic TiO2/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application. Desalination 371:104–114

    Article  Google Scholar 

  7. Shi Y, Li C, He D et al (2017) Preparation of graphene oxide–cellulose acetate nanocomposite membrane for high-flux desalination. J Mater Sci 52:13296–13306. https://doi.org/10.1007/s10853-017-1403-0

    Article  Google Scholar 

  8. Safarpour M, Vatanpour V, Khataee A (2016) Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393:65–78

    Article  Google Scholar 

  9. Safarpour M, Vatanpour V, Khataee A et al (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Sep Purif Technol 154:96–107

    Article  Google Scholar 

  10. An QF, Sun WD, Zhao Q et al (2013) Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers. J Membr Sci 431:171–179

    Article  Google Scholar 

  11. Leo CP, Lee WPC, Ahmad AL et al (2012) Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 89:51–56

    Article  Google Scholar 

  12. Mansouri J, Harrisson S, Chen V (2010) Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J Mater Chem 20:4567–4585

    Article  Google Scholar 

  13. Rajaeian B, Heitz A, Tade MO et al (2015) Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J Membr Sci 485:48–59

    Article  Google Scholar 

  14. Liu P, Zhang S, Wang Y et al (2015) Preparation and characterization of thermally stable copoly (phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes. Appl Surf Sci 335:189–197

    Article  Google Scholar 

  15. Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement. J Membr Sci 345:13–20

    Article  Google Scholar 

  16. Shi H, He Y, Pan Y et al (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Membr Sci 506:60–70

    Article  Google Scholar 

  17. Vatanpour V, Madaeni SS, Moradian R et al (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294

    Article  Google Scholar 

  18. Zhang Y, Cui M (2016) Porous YxFeyZr1−x−yO2 coated TiO2 solid superacid particles/PVDF hybrid membranes with anti-fouling property. Chem Eng J 301:342–352

    Article  Google Scholar 

  19. Cao X, Ma J, Shi X et al (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010

    Article  Google Scholar 

  20. Gao P, Liu J, Zhang T et al (2012) Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation. J Hazard Mater 229:209–216

    Article  Google Scholar 

  21. Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378:73–84

    Article  Google Scholar 

  22. Madaeni SS, Ghaemi N (2007) Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J Membr Sci 303:221–233

    Article  Google Scholar 

  23. Padaki M, Emadzadeh D, Masturra T et al (2015) Antifouling properties of novel PSF and TNT composite membrane and study of effect of the flow direction on membrane washing. Desalination 362:141–150

    Article  Google Scholar 

  24. Shaban M, AbdAllah H, Said L et al (2013) Fabrication of PES/TiO2 nanotubes reverse osmosis (RO) membranes. J Chem Acta 2:59–61

    Google Scholar 

  25. Xin Q, Gao Y, Wu X et al (2015) Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. J Membr Sci 488:13–29

    Article  Google Scholar 

  26. Emadzadeh D, Lau WJ, Rahbari-Sisakht M et al (2015) Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem Eng J 281:243–251

    Article  Google Scholar 

  27. Zhang Q, Zhang S, Dai L et al (2010) Novel zwitterionic poly(arylene ether sulfone)s as antifouling membrane material. J Membr Sci 349:217–224

    Article  Google Scholar 

  28. Mi YF, Zhao Q, Ji YL et al (2015) A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. J Membr Sci 490:311–320

    Article  Google Scholar 

  29. Wang P, Meng J, Xu M et al (2015) A simple but efficient zwitterionization method towards cellulose membrane with superior antifouling property and biocompatibility. J Membr Sci 492:547–558

    Article  Google Scholar 

  30. Zhu J, Tian M, Hou J et al (2016) Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J Mater Chem A 4:1980–1990

    Article  Google Scholar 

  31. Harding JL, Reynolds MM (2014) Combating medical device fouling. Trends Biotechnol 32:140–146

    Article  Google Scholar 

  32. Zhou R, Ren PF, Yang HC et al (2014) Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine codeposition. J Membr Sci 466:18–25

    Article  Google Scholar 

  33. Ji YL, An QF, Guo YS et al (2016) Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles. J Mater Chem A 4:4224–4231

    Article  Google Scholar 

  34. Chiang YC, Chang Y, Chuang CJ et al (2012) A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes. J Membr Sci 389:76–82

    Article  Google Scholar 

  35. Zhao YF, Zhang PB, Sun J et al (2016) Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive. J Membr Sci 510:306–313

    Article  Google Scholar 

  36. An QF, Sun WD, Zhao Q et al (2013) Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers. J Membr Sci 431:171–179

    Article  Google Scholar 

  37. Zhao W, Su YL, Li C et al (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. J Membr Sci 318:405–412

    Article  Google Scholar 

  38. Wu MY, Ma TY, Su YL et al (2017) Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. J Membr Sci 544:79–87

    Article  Google Scholar 

  39. Wu HQ, Tang BB, Wu PY (2013) Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J Membr Sci 428:341–348

    Article  Google Scholar 

  40. Zhu JA, Su YL, Zhao XT et al (2015) Constructing a zwitterionic ultrafiltration membrane surface via multisite anchorage for superior long-term antifouling properties. RSC Adv 5:40126–40134

    Article  Google Scholar 

  41. Yin YH, Xu T, Shen XH et al (2014) Fabrication of chitosan/zwitterion functionalized titania-silica hybrid membranes with improved proton conductivity. J Membr Sci 469:355–363

    Article  Google Scholar 

  42. Bano S, Mahmood A, Kim SJ et al (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3:2065–2071

    Article  Google Scholar 

  43. Ostuni E, Chapman RG, Holmlin RE et al (2001) A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620a

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21476059, 21576189 and 21276063), Hebei Science and Technology Support Program (16273101D), the Key Project of Natural Science Foundation of Tianjin (16JCZDJC36500) and Joint Doctoral Training Foundation of HEBUT (2017GN0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, Z., Chen, J. et al. Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes. J Mater Sci 53, 10499–10512 (2018). https://doi.org/10.1007/s10853-018-2288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2288-2

Keywords

Navigation