Advertisement

Journal of Materials Science

, Volume 53, Issue 14, pp 9896–9912 | Cite as

Preparation of radiopaque polyurethane–urea/graphene oxide nanocomposite using 4-(4-iodophenyl)-1,2,4-triazolidine-3,5-dione

  • Saeed Shiralizadeh
  • Hossein Nasr-Isfahani
  • Ali Keivanloo
  • Mohammad Bakherad
  • Behrooz Yahyaei
  • Parastoo Pourali
Biomaterials
  • 169 Downloads

Abstract

New radiopaque nanocomposites were prepared based on iodinated polyurethane–urea (PUU) and graphene oxide (GO). The iodinated PUU was synthesized using 4,4′-methylenediphenyl diisocyanate (MDI), polyethylene glycol (PEG, Mn = 1000), and 4-(4-iodophenyl)-1,2,4-triazolidine-3,5-dione (IUr) as a novel chain extender and radiopacifying agent. The synthesized urazole, PUU, and the related nanocomposites are characterized by fourier transform infrared spectrum, nuclear magnetic resonance, X-ray diffraction, field-emission scanning electron microscopy, elemental analysis (CHNO), thermogravimetric analysis, and dynamic mechanical thermal analysis (DMTA). The X-ray visibility of the radiopaque PUU and nanocomposites was investigated using X-radiography. To evaluate the biocompatibility of the samples, the indirect MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was carried out on the non-cancerous mouse fibroblast cell line NIH3T3 D4 according to the ISO10993-5 standard. The DMTA results proved introduction of the GO layers into the iodinated PUU matrix, and has improved mechanical properties of the nanocomposites compared to the pure polymer. The X-ray images showed significant radiopacity of the pure polymer and the nanocomposites.

Notes

Acknowledgements

This study was funded by Shahrood University of Technology (Grant Number 50/3786). We are also grateful to Medical department of Islamic Azad University of Shahrood, for assistance in measuring the radiopacity of the samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2286_MOESM1_ESM.pdf (389 kb)
Supplementary material 1 (PDF 388 kb)

References

  1. 1.
    Christiansen C (2005) X-ray contrast media—an overview. Toxicology 209:185–187CrossRefGoogle Scholar
  2. 2.
    Krause W (1999) Delivery of diagnostic agents in computed tomography. Adv Drug Deliv Rev 37:159–173CrossRefGoogle Scholar
  3. 3.
    Kiran S, Joseph R (2015) Synthesis and characterization of X-ray opaque polycarbonate urethane: effect of a dihalogenated chain extender on radiopacity and hemocompatibility. J Biomed Mater Res 103:2214–2224CrossRefGoogle Scholar
  4. 4.
    Wang X, Geng X, Ye L, Zhang A-Y, Feng Z-G (2010) Synthesis and characterization of radiopaque iodine-containing methacrylate-based polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization. Front Mater Sci China 4:366–375CrossRefGoogle Scholar
  5. 5.
    Ghosh P, Das M, Rameshbabu AP, Das D, Datta S, Pal S, Panda AB, Dhara S (2014) Chitosan derivatives cross-linked with iodinated 2, 5-dimethoxy-2, 5-dihydrofuran for non-invasive imaging. ACS Appl Mater Interfaces 6:17926–17936CrossRefGoogle Scholar
  6. 6.
    Pariente J, Bordenave L, Bareille R, Ohayon-Courtes C, Baquey C, Le Guillou M (1999) In vitro cytocompatibility of radio-opacifiers used in ureteral endoprosthesis. Biomaterials 20:523–527CrossRefGoogle Scholar
  7. 7.
    Ginebra M, Albuixech L, Fernandez-Barragan E, Aparicio C, Gil F, San Roman J, Vazquez B, Planell J (2002) Mechanical performance of acrylic bone cements containing different radiopacifying agents. Biomaterials 23:1873–1882CrossRefGoogle Scholar
  8. 8.
    Deb S, Abdulghani S, Behiri J (2002) Radiopacity in bone cements using an organo-bismuth compound. Biomaterials 23:3387–3393CrossRefGoogle Scholar
  9. 9.
    Kiran S, James NR, Joseph R, Jayakrishnan A (2009) Synthesis and characterization of iodinated polyurethane with inherent radiopacity. Biomaterials 30:5552–5559CrossRefGoogle Scholar
  10. 10.
    Shiralizadeh S, Nasr-Isfahani H, Keivanloo A, Bakherad M (2016) Mono- and triiodophenyl isocyanate as radiopacifying agents for methacrylate-based copolymers; biocompatibility and non-toxicity. RSC Adv 6:110400–110408CrossRefGoogle Scholar
  11. 11.
    Yin Q, Yap FY, Yin L, Ma L, Zhou Q, Dobrucki LW, Fan TM, Gaba RC, Cheng J (2013) Poly (iohexol) nanoparticles as contrast agents for in vivo X-ray computed tomography imaging. J Am Chem Soc 135(37):13620–13623CrossRefGoogle Scholar
  12. 12.
    Lusic H, Grinstaff MW (2012) X-ray-computed tomography contrast agents. Chem Rev 113(3):1641–1666CrossRefGoogle Scholar
  13. 13.
    Boyde A, Mccorkell FA, Taylor GK, Bomphrey RJ, Doube M (2014) Iodine vapor staining for atomic number contrast in backscattered electron and X-ray imaging. Microsc Res Tech 77:1044–1051CrossRefGoogle Scholar
  14. 14.
    Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90CrossRefGoogle Scholar
  15. 15.
    Hoppen HJ, Leenslag JW, Pennings AJ, van der Lei B, Robinson PH (1990) Two-ply biodegradable nerve guide: basic aspects of design, construction and biological performance. Biomaterials 11:286–290CrossRefGoogle Scholar
  16. 16.
    De Groot J, De Vrijer R, Pennings A, Klompmaker J, Veth R, Jansen H (1996) Use of porous polyurethanes for meniscal reconstruction and meniscal prostheses. Biomaterials 17:163–173CrossRefGoogle Scholar
  17. 17.
    Zhang J, Woodruff TM, Clark RJ, Martin DJ, Minchin RF (2016) Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomater 41:264–272CrossRefGoogle Scholar
  18. 18.
    Mishra A, Das Purkayastha BP, Roy JK, Aswal VK, Maiti P (2012) Nanoparticle controlled self-assembly in varying chain extended polyurethanes as potential nanobiomaterials. J Phys Chem C 116:2260–2270CrossRefGoogle Scholar
  19. 19.
    Bayer O (1947) Das di-isocyanat-polyadditionsverfahren (polyurethane). Angew Chem 59:257–272CrossRefGoogle Scholar
  20. 20.
    Khatoon H, Ahmad S (2017) A review on conducting polymer reinforced polyurethane composites. J Ind Eng Chem 53:1–22CrossRefGoogle Scholar
  21. 21.
    Li J, Hong R, Li M, Li H, Zheng Y, Ding J (2009) Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Progr Org Coating 64:504–509CrossRefGoogle Scholar
  22. 22.
    Krol P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes, Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 52:915–1015CrossRefGoogle Scholar
  23. 23.
    Daniel-da-Silva AL, Bordado JCM, Martín-Martínez JM (2007) Evidences of phase separation in moisture-cured poly (urethane urea)s by means of temperature modulated differential scanning calorimetry. J Polym Sci B Polym Phys 45:3034–3045CrossRefGoogle Scholar
  24. 24.
    Qu W-Q, Xia Y-R, Jiang L-J, Zhang L-W, Hou Z-S (2016) Synthesis and characterization of a new biodegradable polyurethanes with good mechanical properties. Chin Chem Lett 27:135–138CrossRefGoogle Scholar
  25. 25.
    Chung JH-Y, Simmons A, Zeng Q, Poole-Warren LA (2013) Effects of drug chemistry on the dispersion and release behaviour of polyurethane organosilicate nanocomposites. Eur Polym J 49:652–663CrossRefGoogle Scholar
  26. 26.
    Garrett JT, Siedlecki CA, Runt J (2001) Microdomain morphology of poly (urethane urea) multiblock copolymers. Macromolecules 34:7066–7070CrossRefGoogle Scholar
  27. 27.
    Garrett J, Lin J, Runt J (2002) Influence of preparation conditions on microdomain formation in poly (urethane urea) block copolymers. Macromolecules 35:161–168CrossRefGoogle Scholar
  28. 28.
    Seok S, Shin S, Lee TJ, Jeong J-M, Yang M, Kim DH, Park JY, Lee SJ, Choi BG, Lee KG (2015) Multifunctional polyurethane sponge for polymerase chain reaction enhancement. ACS Appl Mater Interfaces 7:4699–4705CrossRefGoogle Scholar
  29. 29.
    Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Hong Y (2014) Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts. Acta Biomater 10:4618–4628CrossRefGoogle Scholar
  30. 30.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205CrossRefGoogle Scholar
  31. 31.
    Wattanodorn Y, Jenkan R, Atorngitjawat P, Wirasate S (2014) Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polym Test 40:163–169CrossRefGoogle Scholar
  32. 32.
    Rashti A, Yahyaei H, Firoozi S, Ramezani S, Rahiminejad A, Karimi R, Farzaneh K, Mohseni M, Ghanbari H (2016) Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Mater Sci Eng C 69:1248–1255CrossRefGoogle Scholar
  33. 33.
    Lan Y, Liu H, Cao X, Zhao S, Dai K, Yan X, Zheng G, Liu C, Shen C, Guo Z (2016) Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer 97:11–19CrossRefGoogle Scholar
  34. 34.
    Lin S-C, Ma C-CM, Hsiao S-T, Wang Y-S, Yang C-Y, Liao W-H, Li S-M, Wang J-A, Cheng T-Y, Lin C-W (2016) Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl Surf Sci 385:436–444CrossRefGoogle Scholar
  35. 35.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRefGoogle Scholar
  36. 36.
    Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2:283–294CrossRefGoogle Scholar
  37. 37.
    Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. Small 6:711–723CrossRefGoogle Scholar
  38. 38.
    Boatman PD, Urban J, Nguyen M, Qabar M, Kahn M (2003) High-throughput synthesis and optimization of thrombin inhibitors via urazole α-addition and Michael addition. Bioorg Med Chem Lett 13:1445–1449CrossRefGoogle Scholar
  39. 39.
    Mallakpour S, Dinari M (2010) A green route for synthesis of different polyureas based on phenylurazole: rapid solid-state, microwave-assisted technique. High Perform Polym 22:314–327CrossRefGoogle Scholar
  40. 40.
    Mallakpour S, Rafiee Z (2007) A novel one-pot synthesis of 4-substituted 1, 2, 4-triazolidine-3, 5-diones. Synlett 8:1255–1256CrossRefGoogle Scholar
  41. 41.
    Simlot R, Izydore RA, Wong OT, Hall IH (1994) Hypolipidemic activity of 4-substituted 1, 2-diacyl-1, 2, 4-triazolidine-3, 5-diones in rodents. J Pharm Sci 83:367–371CrossRefGoogle Scholar
  42. 42.
    Kanagarajan V, Thanusu J, Ezhilarasi M, Gopalakrishnan M (2011) Solvent-free one-pot synthesis, characterization, antibacterial and antifungal activities of novel spiropiperidinyl-1, 2, 4-triazolidine-3-thiones. Chem Heterocycl Compd 47:60–66CrossRefGoogle Scholar
  43. 43.
    Mallakpour S, Rafiee Z (2008) Ionic liquids as novel and green media for clean synthesis of soluble aromatic-aliphatic poly (amide-ester)s containing hydroxynaphthalene urazole moiety. Polym Adv Technol 19:1015–1023CrossRefGoogle Scholar
  44. 44.
    Mallakpour S, Rafiee Z (2007) Efficient combination of ionic liquids and microwave irradiation as a green protocol for polycondensation of 4-(3-hydroxynaphthalene)-1,2,4-triazolidine-3, 5-dione with diisocyanates. Polymer 48:5530–5540CrossRefGoogle Scholar
  45. 45.
    Gianolio DA, Lanfranchi M, Lusardi F, Marchiò L, Pellinghelli MA (2000) Synthesis and characterization of Co (II), Ni (II), Cu (II) and Zn (II) complexes of 4-amino-1, 2, 4-triazolidine-3, 5-dione (urazine). Inorg Chim Acta 309:91–102CrossRefGoogle Scholar
  46. 46.
    Mallakpour SE (1992) A new method for the oxidation of 4-phenylurazole to 4-phenyltriazolinedione. J Chem Educ 69:238–241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ChemistryShahrood University of TechnologyShahroodIran
  2. 2.Department of Medical Sciences, Shahrood BranchIslamic Azad UniversityShahroodIran

Personalised recommendations