Skip to main content
Log in

Hierarchical LiNi0.5Mn1.5O4 micro-rods with enhanced rate performance for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical LiNi0.5Mn1.5O4 (LNMO) micro-rods composed of primary nanoparticles are fabricated through a hydrothermal route with the presence of glycine, followed by the process control calcination. The as-obtained hierarchical micro-rods reach ca. 8 μm in length and ca. 2 μm in width, and the diameter of primary nanoparticles reach ca. 200 nm. The electrochemical results signify the hierarchical LNMO micro-rods can be a superb combination of the advantages of nanoparticles and micro-rods, which exhibit enhanced rates performance. Reversible discharge capacities around 144, 140, 131, 125, 118, 112 mAh/g at rates of 1, 2, 5, 10, 15 and 20 C are achieved. Particularly, after 200 cycles at 1 C, the discharge capacity remains 142 mAh/g, together with a coulombic efficiency of 99.16%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better…a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939. https://doi.org/10.1002/aenm.201200068

    Article  Google Scholar 

  2. Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242. https://doi.org/10.1016/j.jpowsour.2013.03.024

    Article  Google Scholar 

  3. Zhu J, Gladden C, Liu N, Cui Y, Zhang X (2013) Nanoporous silicon networks as anodes for lithium ion batteries. Phys Chem Chem Phys 15:440–443. https://doi.org/10.1039/c2cp44046f

    Article  Google Scholar 

  4. Xu X, Deng S, Wang H, Liu J, Yan H (2017) Research progress in improving the cycling stability of high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. Nano Micro Lett 9:16–22. https://doi.org/10.1007/s40820-016-0123-3

    Article  Google Scholar 

  5. Manthiram A, Chemelewski K, Lee E-S (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350. https://doi.org/10.1039/c3ee42981d

    Article  Google Scholar 

  6. Kunduraci M, Amatucci GG (2008) The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes. Electrochim Acta 53:4193–4199. https://doi.org/10.1016/j.electacta.2007.12.057

    Article  Google Scholar 

  7. Cabana J, Casas-Cabanas M, Omenya FO, Chernova NA, Zeng D et al (2012) Composition–structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem Mater 24:2952–2964. https://doi.org/10.1021/cm301148d

    Article  Google Scholar 

  8. Chen Z, Qiu S, Cao Y, Qian J, Ai X et al (2013) Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J Mater Chem A 1:4988–4992. https://doi.org/10.1039/c3ta00611e

    Article  Google Scholar 

  9. Gao Z-G, Sun K, Cong L-N, Zhang Y-H, Zhao Q et al (2016) High performance 5 V LiNi0.5Mn1.5O4 spinel cathode materials synthesized by an improved solid-state method. J Alloys Compd 654:257–263. https://doi.org/10.1016/j.jallcom.2015.08.066

    Article  Google Scholar 

  10. Idemoto Y, Narai H, Koura N (2003) Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J Power Sources 119–121:125–129. https://doi.org/10.1016/s0378-7753(03)00140-x

    Article  Google Scholar 

  11. Sha O, Wang S, Qiao Z, Yuan W, Tang Z et al (2012) Synthesis of spinel LiNi0.5Mn1.5O4 cathode material with excellent cycle stability using urea-based sol–gel method. Mater Lett 89:251–253. https://doi.org/10.1016/j.matlet.2012.08.126

    Article  Google Scholar 

  12. Fang J-C, Xu Y-F, Xu G-L, Shen S-Y, Li J-T et al (2016) Fabrication of densely packed LiNi0.5Mn1.5O4 cathode material with excellent long-term cycleability for high-voltage lithium ion batteries. J Power Sources 304:15–23. https://doi.org/10.1016/j.jpowsour.2015.11.021

    Article  Google Scholar 

  13. Zhu Z, Qilu D, Zhang HY (2014) Preparation of spherical hierarchical LiNi0.5Mn1.5O4 with high electrochemical performances by a novel composite co-precipitation method for 5 V lithium ion secondary batteries. Electrochim Acta 115:290–296. https://doi.org/10.1016/j.electacta.2013.10.167

    Article  Google Scholar 

  14. Xue Y, Wang Z, Yu F, Zhang Y, Yin G (2014) Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A 2:4185–4191. https://doi.org/10.1039/c3ta14567k

    Article  Google Scholar 

  15. Liu Y, Zhang M, Xia Y, Qiu B, Liu Z et al (2014) One-step hydrothermal method synthesis of core–shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. J Power Sources 256:66–71. https://doi.org/10.1016/j.jpowsour.2014.01.059

    Article  Google Scholar 

  16. Hai B, Shukla AK, Duncan H, Chen G (2013) The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. J Mater Chem A 1:759–769. https://doi.org/10.1039/c2ta00212d

    Article  Google Scholar 

  17. Zhu X, Li X, Zhu Y, Jin S, Wang Y et al (2014) Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: preparation and application as cathode materials for lithium-ion batteries. J Power Sources 261:93–100. https://doi.org/10.1016/j.jpowsour.2014.03.047

    Article  Google Scholar 

  18. Wang L, Liu G, Wu W, Chen D, Liang G (2015) Synthesis of porous peanut-like LiNi0.5Mn1.5O4 cathode materials through ethylene glycol-assisted hydrothermal method using urea as precipitant agent. J Mater Chem A 3:19497–19506. https://doi.org/10.1039/C5TA05550D

    Article  Google Scholar 

  19. Cui Y, Wang J, Wang M, Zhuang Q (2016) Electrochemical performance and electronic properties of shell LiNi0.5Mn1.5O4 hollow spheres for lithium ion battery. Funct Mater Lett 09:1650027. https://doi.org/10.1142/s1793604716500272

  20. Zhu X, Li X, Zhu Y, Jin S, Wang Y et al (2014) LiNi0.5Mn1.5O4 nanostructures with two-phase intergrowth as enhanced cathodes for lithium-ion batteries. Electrochim Acta 121:253–257. https://doi.org/10.1016/j.electacta.2013.12.176

    Article  Google Scholar 

  21. Liu H, Wang J, Zhang X, Zhou D, Qi X et al (2016) Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces 8:4661–4675. https://doi.org/10.1021/acsami.5b11389

    Article  Google Scholar 

  22. Liu H, Kloepsch R, Wang J, Winter M, Li J (2015) Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultra-long-life lithium-ion battery: positive (100) surfaces in high-voltage spinel system. J Power Sources 300:430–437. https://doi.org/10.1016/j.jpowsour.2015.09.066

    Article  Google Scholar 

  23. Tang X, Jan SS, Qian Y, Xia H, Ni J (2015) Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Sci Rep 5:11958. https://doi.org/10.1038/srep11958

  24. Zhang X, Cheng F, Yang J, Chen J (2013) LiNi0.5Mn1.5O4 porous nanorods as high rate and long-life cathode for Li-ion batteries. Nano Lett 13:2822–2825. https://doi.org/10.1021/nl401072x

    Article  Google Scholar 

  25. Lee H-W, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries. J Power Sources 196:10712–10716. https://doi.org/10.1016/j.jpowsour.2011.09.002

    Article  Google Scholar 

  26. Ding S, Lou XWD (2011) SnO2 nanosheet hollow spheres with improved lithium storage capabilities. Nanoscale 3:3586–3588. https://doi.org/10.1039/c1nr10581g

    Article  Google Scholar 

  27. Si P, Ding S, Yuan J, Lou XWD (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5:7617–7626. https://doi.org/10.1021/nn202714c

    Article  Google Scholar 

  28. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193. https://doi.org/10.1038/nature07853

    Article  Google Scholar 

  29. Shaju KM, Bruce PG (2008) Nano-LiNi0.5Mn1.5O4 spinel: a high power electrode for Li-ion batteries. Dalton Trans 63:5471–5475. https://doi.org/10.1039/b806662k

    Article  Google Scholar 

  30. Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887. https://doi.org/10.1002/adma.200800627

    Article  Google Scholar 

  31. Yang J, Han X, Zhang X, Cheng F, Chen J (2013) Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithium ion batteries: nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m). Nano Res 6:679–687. https://doi.org/10.1007/s12274-013-0343-5

    Article  Google Scholar 

  32. Lai X, Halpert JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604–5618. https://doi.org/10.1039/c1ee02426d

    Article  Google Scholar 

  33. Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries. J Power Sources 196:2452–2460. https://doi.org/10.1016/j.jpowsour.2010.11.001

    Article  Google Scholar 

  34. Zhang X, Cheng F, Zhang K, Liang Y, Yang S et al (2012) Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Adv 2:5669–5675. https://doi.org/10.1039/c2ra20669b/

    Article  Google Scholar 

  35. Liu GQ, Wen L, Wang X, Ma BY (2011) Effect of the impurity Li x Ni1−xO on the electrochemical properties of 5 V cathode material LiNi0.5Mn1.5O4. J Alloys Compd 509:9377–9381. https://doi.org/10.1016/j.jallcom.2011.07.045

    Article  Google Scholar 

  36. Feng XY, Shen C, Fang X, Chen CH (2011) Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. J Alloys Compd 509:3623–3626. https://doi.org/10.1016/j.jallcom.2010.12.116

    Article  Google Scholar 

  37. Wang L, Li H, Huang X, Baudrin E (2011) A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ion 193:32–38. https://doi.org/10.1016/j.ssi.2011.04.007

    Article  Google Scholar 

  38. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4−δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem Mater 16:906–914. https://doi.org/10.1021/cm035050s

    Article  Google Scholar 

  39. Chen Z, Zhao R, Li A, Hu H, Liang G et al (2015) Polyhedral ordered LiNi0.5Mn1.5O4 spinel with excellent electrochemical properties in extreme conditions. J Power Sources 274:265–273. https://doi.org/10.1016/j.jpowsour.2014.10.073

    Article  Google Scholar 

  40. Lian F, Zhang F, Yang L, Ma L, Li Y (2017) Constructing a heterostructural LiNi0.4Mn1.6O4−δ material from concentration-gradient framework to significantly improve its cycling performance. ACS Appl Mater Interfaces 9:15822–15829. https://doi.org/10.1021/acsami.7b01235

    Article  Google Scholar 

  41. Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V Li x Mn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352. https://doi.org/10.1149/1.2198110

    Article  Google Scholar 

  42. Yang T, Sun K, Lei Z, Zhang N, Lang Y (2010) The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery. J Alloys Compd 502:215–219. https://doi.org/10.1016/j.jallcom.2010.04.149

    Article  Google Scholar 

  43. Kunduraci M, Al-Sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2−xNi x O4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592. https://doi.org/10.1021/cm060729s

    Article  Google Scholar 

  44. Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12:117–126. https://doi.org/10.1007/s11581-006-0021-7

    Article  Google Scholar 

  45. Wang Y, Zhu Q (2010) Electrochemical properties and controlled-synthesis of hierarchical b-Ni(OH)2 micro-flowers and hollow microspheres. Mater Res Bull 45:1844–1849. https://doi.org/10.1016/j.materresbull.2010.09.014

    Article  Google Scholar 

  46. Chen X, Sun K, Zhang E, Zhang N (2013) 3D porous micro/nanostructured interconnected metal/metal oxide electrodes for high-rate lithium storage. RSC Adv 3:432–437. https://doi.org/10.1039/c2ra21733c

    Article  Google Scholar 

  47. Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205:385–393. https://doi.org/10.1016/j.jpowsour.2011.12.037

    Article  Google Scholar 

  48. Li Y, Wan S, Veith GM, Unocic RR, Paranthaman MP et al (2017) A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv Energy Mater 7:1601397. https://doi.org/10.1002/aenm.201601397

  49. Xiao J, Chen X, Sushko PV, Sushko ML, Kovarik L et al (2012) High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 24:2109–2116. https://doi.org/10.1002/adma.201104767

    Article  Google Scholar 

  50. Wang H, Tan TA, Yang P, Lai MO, Lu L (2011) High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J Phys Chem C 115:6102–6110. https://doi.org/10.1021/jp110746w

    Article  Google Scholar 

  51. Cheng F, Wang H, Zhu Z, Wang Y, Zhang T et al (2011) Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ Sci 4:3668–3675. https://doi.org/10.1039/c1ee01795k

    Article  Google Scholar 

  52. Zeng Y-P, Wu X-L, Mei P, Cong L-N, Yao C et al (2014) Effect of cationic and anionic substitutions on the electrochemical properties of LiNi0.5Mn1.5O4 spinel cathode materials. Electrochim Acta 138:493–500. https://doi.org/10.1016/j.electacta.2014.06.082

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21401049, 51673060, 11574075, 51272071), the Ministry of Science and Technology of China (Grant 2016YFA0200200), Hubei Provincial Department of Science & Technology (2016CFB199, 2015CFB266, 2014CFA096), Natural Science Fund for Distinguished Young Scholars of Hubei Province, China (2016CFA036), Hubei Provincial Department of Education (Q2016010 and D201602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Mei or Xianbao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11655 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Mei, T., Li, J. et al. Hierarchical LiNi0.5Mn1.5O4 micro-rods with enhanced rate performance for lithium-ion batteries. J Mater Sci 53, 9710–9720 (2018). https://doi.org/10.1007/s10853-018-2272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2272-x

Keywords

Navigation