Advertisement

Journal of Materials Science

, Volume 53, Issue 13, pp 9710–9720 | Cite as

Hierarchical LiNi0.5Mn1.5O4 micro-rods with enhanced rate performance for lithium-ion batteries

  • Shiyuan Zhou
  • Tao Mei
  • Jing Li
  • Wenbo Pi
  • Jianying Wang
  • Jinhua Li
  • Xianbao Wang
Energy materials
  • 275 Downloads

Abstract

Hierarchical LiNi0.5Mn1.5O4 (LNMO) micro-rods composed of primary nanoparticles are fabricated through a hydrothermal route with the presence of glycine, followed by the process control calcination. The as-obtained hierarchical micro-rods reach ca. 8 μm in length and ca. 2 μm in width, and the diameter of primary nanoparticles reach ca. 200 nm. The electrochemical results signify the hierarchical LNMO micro-rods can be a superb combination of the advantages of nanoparticles and micro-rods, which exhibit enhanced rates performance. Reversible discharge capacities around 144, 140, 131, 125, 118, 112 mAh/g at rates of 1, 2, 5, 10, 15 and 20 C are achieved. Particularly, after 200 cycles at 1 C, the discharge capacity remains 142 mAh/g, together with a coulombic efficiency of 99.16%.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21401049, 51673060, 11574075, 51272071), the Ministry of Science and Technology of China (Grant 2016YFA0200200), Hubei Provincial Department of Science & Technology (2016CFB199, 2015CFB266, 2014CFA096), Natural Science Fund for Distinguished Young Scholars of Hubei Province, China (2016CFA036), Hubei Provincial Department of Education (Q2016010 and D201602).

Supplementary material

10853_2018_2272_MOESM1_ESM.docx (11.4 mb)
Supplementary material 1 (DOCX 11655 kb)

References

  1. 1.
    Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better…a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939.  https://doi.org/10.1002/aenm.201200068 CrossRefGoogle Scholar
  2. 2.
    Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242.  https://doi.org/10.1016/j.jpowsour.2013.03.024 CrossRefGoogle Scholar
  3. 3.
    Zhu J, Gladden C, Liu N, Cui Y, Zhang X (2013) Nanoporous silicon networks as anodes for lithium ion batteries. Phys Chem Chem Phys 15:440–443.  https://doi.org/10.1039/c2cp44046f CrossRefGoogle Scholar
  4. 4.
    Xu X, Deng S, Wang H, Liu J, Yan H (2017) Research progress in improving the cycling stability of high voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. Nano Micro Lett 9:16–22.  https://doi.org/10.1007/s40820-016-0123-3 CrossRefGoogle Scholar
  5. 5.
    Manthiram A, Chemelewski K, Lee E-S (2014) A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350.  https://doi.org/10.1039/c3ee42981d CrossRefGoogle Scholar
  6. 6.
    Kunduraci M, Amatucci GG (2008) The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes. Electrochim Acta 53:4193–4199.  https://doi.org/10.1016/j.electacta.2007.12.057 CrossRefGoogle Scholar
  7. 7.
    Cabana J, Casas-Cabanas M, Omenya FO, Chernova NA, Zeng D et al (2012) Composition–structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem Mater 24:2952–2964.  https://doi.org/10.1021/cm301148d CrossRefGoogle Scholar
  8. 8.
    Chen Z, Qiu S, Cao Y, Qian J, Ai X et al (2013) Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J Mater Chem A 1:4988–4992.  https://doi.org/10.1039/c3ta00611e CrossRefGoogle Scholar
  9. 9.
    Gao Z-G, Sun K, Cong L-N, Zhang Y-H, Zhao Q et al (2016) High performance 5 V LiNi0.5Mn1.5O4 spinel cathode materials synthesized by an improved solid-state method. J Alloys Compd 654:257–263.  https://doi.org/10.1016/j.jallcom.2015.08.066 CrossRefGoogle Scholar
  10. 10.
    Idemoto Y, Narai H, Koura N (2003) Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J Power Sources 119–121:125–129.  https://doi.org/10.1016/s0378-7753(03)00140-x CrossRefGoogle Scholar
  11. 11.
    Sha O, Wang S, Qiao Z, Yuan W, Tang Z et al (2012) Synthesis of spinel LiNi0.5Mn1.5O4 cathode material with excellent cycle stability using urea-based sol–gel method. Mater Lett 89:251–253.  https://doi.org/10.1016/j.matlet.2012.08.126 CrossRefGoogle Scholar
  12. 12.
    Fang J-C, Xu Y-F, Xu G-L, Shen S-Y, Li J-T et al (2016) Fabrication of densely packed LiNi0.5Mn1.5O4 cathode material with excellent long-term cycleability for high-voltage lithium ion batteries. J Power Sources 304:15–23.  https://doi.org/10.1016/j.jpowsour.2015.11.021 CrossRefGoogle Scholar
  13. 13.
    Zhu Z, Qilu D, Zhang HY (2014) Preparation of spherical hierarchical LiNi0.5Mn1.5O4 with high electrochemical performances by a novel composite co-precipitation method for 5 V lithium ion secondary batteries. Electrochim Acta 115:290–296.  https://doi.org/10.1016/j.electacta.2013.10.167 CrossRefGoogle Scholar
  14. 14.
    Xue Y, Wang Z, Yu F, Zhang Y, Yin G (2014) Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A 2:4185–4191.  https://doi.org/10.1039/c3ta14567k CrossRefGoogle Scholar
  15. 15.
    Liu Y, Zhang M, Xia Y, Qiu B, Liu Z et al (2014) One-step hydrothermal method synthesis of core–shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. J Power Sources 256:66–71.  https://doi.org/10.1016/j.jpowsour.2014.01.059 CrossRefGoogle Scholar
  16. 16.
    Hai B, Shukla AK, Duncan H, Chen G (2013) The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. J Mater Chem A 1:759–769.  https://doi.org/10.1039/c2ta00212d CrossRefGoogle Scholar
  17. 17.
    Zhu X, Li X, Zhu Y, Jin S, Wang Y et al (2014) Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: preparation and application as cathode materials for lithium-ion batteries. J Power Sources 261:93–100.  https://doi.org/10.1016/j.jpowsour.2014.03.047 CrossRefGoogle Scholar
  18. 18.
    Wang L, Liu G, Wu W, Chen D, Liang G (2015) Synthesis of porous peanut-like LiNi0.5Mn1.5O4 cathode materials through ethylene glycol-assisted hydrothermal method using urea as precipitant agent. J Mater Chem A 3:19497–19506.  https://doi.org/10.1039/C5TA05550D CrossRefGoogle Scholar
  19. 19.
    Cui Y, Wang J, Wang M, Zhuang Q (2016) Electrochemical performance and electronic properties of shell LiNi0.5Mn1.5O4 hollow spheres for lithium ion battery. Funct Mater Lett 09:1650027.  https://doi.org/10.1142/s1793604716500272
  20. 20.
    Zhu X, Li X, Zhu Y, Jin S, Wang Y et al (2014) LiNi0.5Mn1.5O4 nanostructures with two-phase intergrowth as enhanced cathodes for lithium-ion batteries. Electrochim Acta 121:253–257.  https://doi.org/10.1016/j.electacta.2013.12.176 CrossRefGoogle Scholar
  21. 21.
    Liu H, Wang J, Zhang X, Zhou D, Qi X et al (2016) Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces 8:4661–4675.  https://doi.org/10.1021/acsami.5b11389 CrossRefGoogle Scholar
  22. 22.
    Liu H, Kloepsch R, Wang J, Winter M, Li J (2015) Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultra-long-life lithium-ion battery: positive (100) surfaces in high-voltage spinel system. J Power Sources 300:430–437.  https://doi.org/10.1016/j.jpowsour.2015.09.066 CrossRefGoogle Scholar
  23. 23.
    Tang X, Jan SS, Qian Y, Xia H, Ni J (2015) Graphene wrapped ordered LiNi0.5Mn1.5O4 nanorods as promising cathode material for lithium-ion batteries. Sci Rep 5:11958.  https://doi.org/10.1038/srep11958
  24. 24.
    Zhang X, Cheng F, Yang J, Chen J (2013) LiNi0.5Mn1.5O4 porous nanorods as high rate and long-life cathode for Li-ion batteries. Nano Lett 13:2822–2825.  https://doi.org/10.1021/nl401072x CrossRefGoogle Scholar
  25. 25.
    Lee H-W, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries. J Power Sources 196:10712–10716.  https://doi.org/10.1016/j.jpowsour.2011.09.002 CrossRefGoogle Scholar
  26. 26.
    Ding S, Lou XWD (2011) SnO2 nanosheet hollow spheres with improved lithium storage capabilities. Nanoscale 3:3586–3588.  https://doi.org/10.1039/c1nr10581g CrossRefGoogle Scholar
  27. 27.
    Si P, Ding S, Yuan J, Lou XWD (2011) Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing. ACS Nano 5:7617–7626.  https://doi.org/10.1021/nn202714c CrossRefGoogle Scholar
  28. 28.
    Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193.  https://doi.org/10.1038/nature07853 CrossRefGoogle Scholar
  29. 29.
    Shaju KM, Bruce PG (2008) Nano-LiNi0.5Mn1.5O4 spinel: a high power electrode for Li-ion batteries. Dalton Trans 63:5471–5475.  https://doi.org/10.1039/b806662k CrossRefGoogle Scholar
  30. 30.
    Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887.  https://doi.org/10.1002/adma.200800627 CrossRefGoogle Scholar
  31. 31.
    Yang J, Han X, Zhang X, Cheng F, Chen J (2013) Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithium ion batteries: nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m). Nano Res 6:679–687.  https://doi.org/10.1007/s12274-013-0343-5 CrossRefGoogle Scholar
  32. 32.
    Lai X, Halpert JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604–5618.  https://doi.org/10.1039/c1ee02426d CrossRefGoogle Scholar
  33. 33.
    Li J, Daniel C, Wood D (2011) Materials processing for lithium-ion batteries. J Power Sources 196:2452–2460.  https://doi.org/10.1016/j.jpowsour.2010.11.001 CrossRefGoogle Scholar
  34. 34.
    Zhang X, Cheng F, Zhang K, Liang Y, Yang S et al (2012) Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Adv 2:5669–5675.  https://doi.org/10.1039/c2ra20669b/ CrossRefGoogle Scholar
  35. 35.
    Liu GQ, Wen L, Wang X, Ma BY (2011) Effect of the impurity LixNi1−xO on the electrochemical properties of 5 V cathode material LiNi0.5Mn1.5O4. J Alloys Compd 509:9377–9381.  https://doi.org/10.1016/j.jallcom.2011.07.045 CrossRefGoogle Scholar
  36. 36.
    Feng XY, Shen C, Fang X, Chen CH (2011) Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. J Alloys Compd 509:3623–3626.  https://doi.org/10.1016/j.jallcom.2010.12.116 CrossRefGoogle Scholar
  37. 37.
    Wang L, Li H, Huang X, Baudrin E (2011) A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ion 193:32–38.  https://doi.org/10.1016/j.ssi.2011.04.007 CrossRefGoogle Scholar
  38. 38.
    Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4−δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem Mater 16:906–914.  https://doi.org/10.1021/cm035050s CrossRefGoogle Scholar
  39. 39.
    Chen Z, Zhao R, Li A, Hu H, Liang G et al (2015) Polyhedral ordered LiNi0.5Mn1.5O4 spinel with excellent electrochemical properties in extreme conditions. J Power Sources 274:265–273.  https://doi.org/10.1016/j.jpowsour.2014.10.073 CrossRefGoogle Scholar
  40. 40.
    Lian F, Zhang F, Yang L, Ma L, Li Y (2017) Constructing a heterostructural LiNi0.4Mn1.6O4−δ material from concentration-gradient framework to significantly improve its cycling performance. ACS Appl Mater Interfaces 9:15822–15829.  https://doi.org/10.1021/acsami.7b01235 CrossRefGoogle Scholar
  41. 41.
    Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352.  https://doi.org/10.1149/1.2198110 CrossRefGoogle Scholar
  42. 42.
    Yang T, Sun K, Lei Z, Zhang N, Lang Y (2010) The influence of holding time on the performance of LiNi0.5Mn1.5O4 cathode for lithium ion battery. J Alloys Compd 502:215–219.  https://doi.org/10.1016/j.jallcom.2010.04.149 CrossRefGoogle Scholar
  43. 43.
    Kunduraci M, Al-Sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2−xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592.  https://doi.org/10.1021/cm060729s CrossRefGoogle Scholar
  44. 44.
    Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12:117–126.  https://doi.org/10.1007/s11581-006-0021-7 CrossRefGoogle Scholar
  45. 45.
    Wang Y, Zhu Q (2010) Electrochemical properties and controlled-synthesis of hierarchical b-Ni(OH)2 micro-flowers and hollow microspheres. Mater Res Bull 45:1844–1849.  https://doi.org/10.1016/j.materresbull.2010.09.014 CrossRefGoogle Scholar
  46. 46.
    Chen X, Sun K, Zhang E, Zhang N (2013) 3D porous micro/nanostructured interconnected metal/metal oxide electrodes for high-rate lithium storage. RSC Adv 3:432–437.  https://doi.org/10.1039/c2ra21733c CrossRefGoogle Scholar
  47. 47.
    Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sources 205:385–393.  https://doi.org/10.1016/j.jpowsour.2011.12.037 CrossRefGoogle Scholar
  48. 48.
    Li Y, Wan S, Veith GM, Unocic RR, Paranthaman MP et al (2017) A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv Energy Mater 7:1601397.  https://doi.org/10.1002/aenm.201601397
  49. 49.
    Xiao J, Chen X, Sushko PV, Sushko ML, Kovarik L et al (2012) High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 24:2109–2116.  https://doi.org/10.1002/adma.201104767 CrossRefGoogle Scholar
  50. 50.
    Wang H, Tan TA, Yang P, Lai MO, Lu L (2011) High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: effects of doping and particle size. J Phys Chem C 115:6102–6110.  https://doi.org/10.1021/jp110746w CrossRefGoogle Scholar
  51. 51.
    Cheng F, Wang H, Zhu Z, Wang Y, Zhang T et al (2011) Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ Sci 4:3668–3675.  https://doi.org/10.1039/c1ee01795k CrossRefGoogle Scholar
  52. 52.
    Zeng Y-P, Wu X-L, Mei P, Cong L-N, Yao C et al (2014) Effect of cationic and anionic substitutions on the electrochemical properties of LiNi0.5Mn1.5O4 spinel cathode materials. Electrochim Acta 138:493–500.  https://doi.org/10.1016/j.electacta.2014.06.082 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations