Synthesis of metal-phase-assisted 1T@2H-MoS2 nanosheet-coated black TiO2 spheres with visible light photocatalytic activities

  • Hongmei Fan
  • Rong Wu
  • Haiyang Liu
  • Xi Yang
  • Yanfei Sun
  • Chu Chen
Energy materials
  • 27 Downloads

Abstract

Hybrid-phase-MoS2 (1T@2H-MoS2) nanosheet-coated black TiO2 spheres (1T@2H-MoS2/B-TiO2) were prepared using a hydrothermal method and a chemical reduction method under an argon atmosphere. X-ray diffraction, transmission electron microscope, Raman spectra and X-ray photoelectron spectroscopy indicated the generation of the 1T@2H-MoS2 and black TiO2. The efficiency of the 1T@2H-MoS2/B-TiO2 core–shell structure degradation of rhodamine B (RhB) reached 98.0%. The high photocatalytic activity was due to the presence of 1T-MoS2, which accelerated the electron transfer to participate in the redox reaction. In addition, the presence of B-TiO2 suppressed the undesirable electron–hole recombination. Finally, the synergistic effect between 1T@2H-MoS2 and B-TiO2 promoted the separation of the photoelectron–hole pairs. Moreover, scavenger studies found that the hydroxyl radical (OH) was the dominant reactive oxygen species in the degradation of RhB under visible light irradiation. The possible growth mechanism and photocatalytic mechanism are discussed in detail. The results of this study will contribute to the improvement in the visible light absorption and photocatalytic degradation of catalysts.

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 11264037, 51602273, 61464010, and 61604126), Wuhan University of Technology (2018-KF-14), Doctoral fund of Xin Jiang University (BS150219), and Natural Science Foundation of Xinjiang (2017D01C055).

References

  1. 1.
    Ge M, Cao C, Huang J, Li S, Chen Z, Zhang KQ, Al-Deyab SS, Lai Y (2016) A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J Mater Chem A 4:6772–6801CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv 5:79479–79510CrossRefGoogle Scholar
  3. 3.
    Hou J, Zhao H, Huang F, Jing Q, Cao H, Wu Q, Peng S, Cao G (2016) High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays. J Power Sources 325:438–445CrossRefGoogle Scholar
  4. 4.
    Han K, Zhang X, Wang H, Liu Y, Cao A (2016) A facile microwaving method to turn titanium oxide into highly active Ti3+ self-doped structure. J Nano Sci Nanotechnol 16:9826–9831CrossRefGoogle Scholar
  5. 5.
    Hamdy MS, Saputera WH, Groenen EJ, Mul G (2014) A novel TiO2 composite for photocatalytic wastewater treatment. J Catal 310:75–83CrossRefGoogle Scholar
  6. 6.
    Ao C, Tian P, Ouyang L, Da G, Xu X, Xu J, Han YF (2016) Dispersing Pd nanoparticles on N-doped TiO2: a highly selective catalyst for H2O2 synthesis. Catal Sci Technol 6:5060–5068CrossRefGoogle Scholar
  7. 7.
    Belver C, Han C, Rodriguez JJ, Dionysiou DD (2017) Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catal Today 280:21–28CrossRefGoogle Scholar
  8. 8.
    Reszczyńska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M, Ohtani B, Zaleska A (2015) Visible light activity of rare earth metal doped (Er3+, Yb3+or Er3+/Yb3+) titania photocatalysts. Appl Catal B Environ 163:40–49CrossRefGoogle Scholar
  9. 9.
    Sun Y, Tan J, Lin H, Wang X, Liu J, Li Y, Wang C (2018) A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light. J Colloid Interface Sci 516:138–144CrossRefGoogle Scholar
  10. 10.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  11. 11.
    Cao Y, Xing Z, Shen Y, Li Z, Wu X, Yan X, Zou J, Yang S, Zhou W (2017) Mesoporous black Ti3+/N-TiO2 spheres for efficient visible-light-driven photocatalytic performance. Chem Eng J 325:199–207CrossRefGoogle Scholar
  12. 12.
    Zha R, Nadimicherla R, Guo X (2015) Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J Mater Chem A 3:6565–6574CrossRefGoogle Scholar
  13. 13.
    Zhang J, Vasei M, Sang Y, Liu H, Claverie JP (2016) TiO2@Carbon photocatalysts: the effect of carbon thickness on catalysis. ACS Appl Mater Int 8:1903–1912CrossRefGoogle Scholar
  14. 14.
    Yang X, Qin J, Jiang Y, Chen K, Yan X, Zhang D, Li R, Tang H (2015) Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Appl Catal B Environ 166–167:231–240CrossRefGoogle Scholar
  15. 15.
    Liang Y, Wang H, Sanchez Casalongue H, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3:701–705CrossRefGoogle Scholar
  16. 16.
    Liu X, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W (2017) Fabrication of 3D flower-like black N–TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Appl Catal B Environ 201:119–127CrossRefGoogle Scholar
  17. 17.
    Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277CrossRefGoogle Scholar
  18. 18.
    Zheng HL, Yang BS, Wang DD, Han RL, Du XB, Yan Y (2014) Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl Phys Lett 104:132403CrossRefGoogle Scholar
  19. 19.
    Xiang QJ, Yu JG, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578CrossRefGoogle Scholar
  20. 20.
    Cai L, He J, Liu Q, Yao T, Chen L, Yan W, Hu F, Jiang Y, Zhao Y, Hu T, Sun Z, Wei S (2015) Vacancy-induced ferromagnetism of MoS2 nanosheets. J Am Chem Soc 137:2622–2627CrossRefGoogle Scholar
  21. 21.
    Wang D, Zhang X, Bao S, Zhang Z, Fei H, Wu Z (2017) Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J Mater Chem A 5(6):2681–2688CrossRefGoogle Scholar
  22. 22.
    Wang D, Xiao Y, Luo X, Wu Z, Wang YJ, Fang B (2017) Swollen ammoniated MoS2 with 1T/2H hybrid phases for high-rate electrochemical energy storage. ACS Sustain Chem Eng 5(3):2509–2515CrossRefGoogle Scholar
  23. 23.
    Qi Y, Xu Q, Wang Y, Yan B, Ren Y, Chen Z (2016) CO2-induced phase engineering: protocol for enhanced photoelectrocatalytic performance of 2D MoS2 nanosheets. ACS Nano 10:2903–2909CrossRefGoogle Scholar
  24. 24.
    Zhang J, Wang T, Liu P, Liu Y, Ma J, Gao D (2016) Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim Acta 217:181–186CrossRefGoogle Scholar
  25. 25.
    Cai L, Cheng W, Yao T, Huang Y, Tang F, Liu Q, Liu W, Sun Z, Hu F, Jiang Y, Yan W, Wei S (2017) High-content metallic 1T phase in MoS2-based electrocatalyst for efficient hydrogen evolution. J Phys Chem C 121:15071–15077CrossRefGoogle Scholar
  26. 26.
    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A (2015) Charge mediated semiconducting-to-metallic phase transition in molybdenum disulfide monolayer and hydrogen evolution reaction in new 1T′ phase. J Phys Chem C 119:13124–13128CrossRefGoogle Scholar
  27. 27.
    Wang D, Su B, Jiang Y, Li L, Ng BK, Wu Z, Liu F (2017) Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chem Eng J 330:102–108CrossRefGoogle Scholar
  28. 28.
    Liu X, Gao S, Xu H, Lou Z, Wang W, Huang B, Dai Y (2013) Green synthetic approach for Ti3+ self-doped TiO2-x nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5:1870–1875CrossRefGoogle Scholar
  29. 29.
    Shi S, Gao D, Xia B, Liu P, Xue D (2015) Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase. J Mater Chem A 3:24414–24421CrossRefGoogle Scholar
  30. 30.
    Jiao Y, Mukhopadhyay A, Ma Y, Yang L, Hafez AM, Zhu H (2018) Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv Energy Mater 5:1702779CrossRefGoogle Scholar
  31. 31.
    Wang D, Xu Y, Sun F, Zhang Q, Wang P, Wang X (2016) Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification. Appl Surf Sci 377:221–227CrossRefGoogle Scholar
  32. 32.
    Liu R, Ren F, Yang J, Su W, Sun Z, Zhang L, Wang C (2015) One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity. Front Mater Sci 10:15–22CrossRefGoogle Scholar
  33. 33.
    Liu C, Chen J, Che H, Huang K, Charpentier PA, Xu WZ, Shi W, Dong H (2017) Construction and enhanced photocatalytic activities of a hydrogenated TiO2 nanobelt coated with CDs/MoS2 nanosheets. RSC Adv 7:8429–8442CrossRefGoogle Scholar
  34. 34.
    Liu Q, Li X, He Q, Khalil A, Liu D, Xiang T, Wu X, Song L (2015) Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small 11:5556–5564CrossRefGoogle Scholar
  35. 35.
    Maitra U, Gupta U, De M, Datta R, Govindaraj A, Rao CNR (2013) Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew Chem Int Edit 52:13057–13061CrossRefGoogle Scholar
  36. 36.
    Myung ST, Kikuchi M, Yoon CS et al (2013) Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ Sci 6(9):2609–2614CrossRefGoogle Scholar
  37. 37.
    Sabarinathan M, Harish S, Archana J, Navaneethan M, Ikeda H, Hayakawa Y (2017) Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv 7:24754–24763CrossRefGoogle Scholar
  38. 38.
    Lai LL, Wu JM (2015) A facile solution approach to W, N co-doped TiO2 nanobelt thin films with high photocatalytic activity. J Mater Chem A 3:15863–15868CrossRefGoogle Scholar
  39. 39.
    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRefGoogle Scholar
  40. 40.
    Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z Liu, Wang H, Zhang J (2013) synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147CrossRefGoogle Scholar
  41. 41.
    Liu X, Xing Z, Zhang H et al (2016) Fabrication of 3 D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis. Chemsuschem 9:1118–1124CrossRefGoogle Scholar
  42. 42.
    Wei S, Wu R, Jian J et al (2015) Black and yellow anatase titania formed by (H, N)-doping: strong visible-light absorption and enhanced visible-light photocatalysis. Dalton T 44:1534–1538CrossRefGoogle Scholar
  43. 43.
    Mahler B, Hoepfner V, Liao K, Ozin GA (2014) Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J Am Chem Soc 136(40):14121–14127CrossRefGoogle Scholar
  44. 44.
    Gao W, Wang M, Ran C, Li L (2015) Facile one-pot synthesis of MoS2 quantum dots–graphene–TiO2 composites for highly enhanced photocatalytic properties. Chem Commun 51:1709–1712CrossRefGoogle Scholar
  45. 45.
    Nimbalkar DB, Lo HH, Ramacharyulu PVRK, Ke SC (2016) Improved photocatalytic activity of RGO/MoS2 nanosheets decorated on TiO2 nanoparticles. RSC Adv 6:31661–31667CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics Science and TechnologyXinjiang UniversityÜrümqiChina

Personalised recommendations