Journal of Materials Science

, Volume 53, Issue 13, pp 9650–9661 | Cite as

Synthesis and characterization of novel ferrite–piezoelectric multiferroic core–shell-type structure

  • M. Cernea
  • B. S. Vasile
  • I. V. Ciuchi
  • V. A. Surdu
  • C. Bartha
  • A. Iuga
  • P. Galizia
  • C. Galassi
Electronic materials
  • 26 Downloads

Abstract

Hybrid ferromagnetic/piezoelectric core–shell nanoparticles and ceramics have potential for a wide range of applications due to their tunability, electronic and magnetic properties. In this study, we designed a core–shell-type nanostructure of composition CoFe2O4/BNT-BT0.08, where BNT-BT0.08 is the abbreviation of bismuth, sodium titanate (Bi0.5Na0.5TiO3, BNT) doped with 8 mol% barium titanate (BaTiO3, BT). This multiferroic composite was prepared by covering CoFe2O4 nanoparticles with a shell of BNT-BT0.08 using the sol–gel technique. Scanning and transmission electron microscopy confirmed formation of a core–shell structure. The results of microstructure, dielectric, piezoelectric and magnetic investigations demonstrated that this heterostructure shows simultaneously electrical and magnetic behavior, at room temperature. XRD pattern of core–shell composite CoFe2O4/BNT-BT0.08 powder reveals only cubic CoFe2O4 and rhombohedral Bi0.5Na0.5TiO3 phases. CoFe2O4/BNT-BT0.08 core–shell nanostructure sample shows high values of permittivity (ε ≥ 600) together with high dielectric losses (tan δ ≥ 1) in the low-frequency range (ν ≤ 104 Hz). PFM and polarization hysteresis indicated a ferroelectric domains structure and remnant polarization of ~ 2.6 µC/cm2 for the ceramics pellets samples of CoFe2O4/BNT-BT0.08. The present study reveals the possibility of coating nanoparticles onto nanometer-sized core particles, using controlled sol–gel process, in order to prepare multifunctional core–shell composites for piezoelectric and magnetoelectronic sensors.

Notes

Acknowledgements

The authors would like to thank Dr. L. Diamandescu for helpful comments on the XRD analyses. The SEM analyses on the samples were possible due to EU-funding grant POSCCE-A2-O2.2.1-2013-1/Priority direction 2, Project No. 638/12.03.2014, cod SMIS-CSNR 48652.

Compliance with ethical standards

Conflict of interest

The authors and the institutes where the work has been carried out declare that there are no conflicts of interest regarding the publication of this article.

References

  1. 1.
    Katoch R, Sekhar CD, Adyam V, Scott JF, Gupta R, Garg A (2016) Spin phonon interactions and magnetodielectric effects in multiferroic BiFeO3–PbTiO3. J Phys Condens Matter 28:075901CrossRefGoogle Scholar
  2. 2.
    Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status and future directions. J Appl Phys 103:031101CrossRefGoogle Scholar
  3. 3.
    Xie S, Ma F, Liu Y, Li J (2011) Multiferroic CoFe2O4–Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 3:3152–3158CrossRefGoogle Scholar
  4. 4.
    Islam RA, Bedekar V, Poudyal N, Liu JP, Priya S (2008) Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 particulate composites. J Appl Phys 104:104111CrossRefGoogle Scholar
  5. 5.
    Gao X, Rodriguez BJ, Liu L, Birajdar B, Pantel D, Ziese M, Alexe M, Hesse D (2010) Microstructure and properties of wellordered multiferroic Pb(Zr, Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4:1099–1107CrossRefGoogle Scholar
  6. 6.
    Quan ND, Bac LH, Thiet DV, Hung VN, Dung DD (2014) Current development in lead-free-based piezoelectric materials. Adv Mater Sci Eng 2014:365391CrossRefGoogle Scholar
  7. 7.
    Tian ZM, Zhang YS, Yuan SL, Wu MS, Wang CH, Ma ZZ, Huo SX, Duan HN (2012) Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solutions. Mater Sci Eng B 177:74–78CrossRefGoogle Scholar
  8. 8.
    Zhou C, Liu X, Li W (2008) Dielectric and piezoelectric properties of BiFeO3 modified Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 lead-free piezoelectric ceramics. Mater Sci Eng, B 153:31–35CrossRefGoogle Scholar
  9. 9.
    Bennett J, Bell AJ, Stevenson TJ, Smith RI, Sterianou I, Reaney IM, Comyn TP (2013) Multiferroic properties of BiFeO3–(K0.5Bi0.5)TiO3 ceramics. Mater Lett 93:172–175CrossRefGoogle Scholar
  10. 10.
    Tuan NH, Bac LH, Cuong LV, Thiet DV, Tam TV, Dung DD (2017) Structural, optical, and magnetic properties of lead-free ferroelectric Bi0.5K0.5TiO3 solid solution with BiFeO3 materials. J Electron Mater 46:3472–3478CrossRefGoogle Scholar
  11. 11.
    Yang H, Zhang G, Hai G, Xiang X (2015) Simultaneous enhancement of electrical and magnetoelectric effects in BaTiO3–Bi0.5Na0.5TiO3/CoFe2O4 laminate composites. J Alloys Compd 646:1104–1108CrossRefGoogle Scholar
  12. 12.
    Oliveira PN, Silva DM, Dias GS, Santos IA, Cotica LF (2016) Synthesis and physical property measurements of CoFe2O4:BaTiO3 core-shell composite nanoparticles. Ferroelectrics 499:76–82CrossRefGoogle Scholar
  13. 13.
    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao CNR (2006) Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B 74:161306CrossRefGoogle Scholar
  14. 14.
    Tolea F, Grecu MN, Kuncser V, Constantinescu SG, Ghica D (2015) On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles. Appl Phys Lett 106:142404CrossRefGoogle Scholar
  15. 15.
    Galizia P, Cernea M, Mihalache V, Diamandescu L, Maizza G, Galassi C (2017) Easy batch-scale production of cobalt ferrite nanopowders by two-step milling: structural and magnetic characterization. Mater Design 130:327–354CrossRefGoogle Scholar
  16. 16.
    Galizia P, Baldisserri C, Capiani C, Galassi C (2016) Multiple parallel twinning overgrowth in nanostructured dense cobalt ferrite. Mater Design 109:19–26CrossRefGoogle Scholar
  17. 17.
    Zhou JP, Lv L, Liu Q, Zhang YX, Liu P (2012) Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci Technol Adv Mater 13:045001CrossRefGoogle Scholar
  18. 18.
    Corral-Flores V, Bueno-Baques D, Ziolo RF (2010) Synthesis and characterization of novel CoFe2O4–BaTiO3 multiferroic core–shell-type nanostructures. Acta Mater 58:764–769CrossRefGoogle Scholar
  19. 19.
    Corral-Flores V, Bueno-Baques D, Carrillo-Flores D, Matutes-Aquino JA (2006) Enhanced magnetoelectric effect in core-shell particulate composites. J Appl Phys 99:08J503CrossRefGoogle Scholar
  20. 20.
    Koo YS, Bonaedy T, Sung KD, Jung JH, Yoon JB, Jo YH, Jung MH, Lee HJ, Koo TY, Jeong YH (2007) Magnetodielectric coupling in core/shell BaTiO3/gamma-Fe2O3 nanoparticles. Appl Phys Lett 91:212903CrossRefGoogle Scholar
  21. 21.
    Cernea M, Galizia P, Ciuchi I, Aldica G, Mihalache V, Diamandescu L, Galassi C (2016) CoFe2O4 magnetic ceramic derived from gel and densified by spark plasma sintering. J Alloy Compd 656:854–862CrossRefGoogle Scholar
  22. 22.
    Cernea M, Trupina L, Dragoi C, Galca AC, Trinca L (2012) Structural, optical, and electric properties of BNT-BT0.08 thin films processed by sol–gel technique. J Mater Sci 47:6966–6971.  https://doi.org/10.1007/s10853-012-6646-1 CrossRefGoogle Scholar
  23. 23.
    Popescu M, Ghizdeanu C (1979) Cation distribution in cobalt ferrite-aluminates. Phys Status Solidi A 52:K169–K172CrossRefGoogle Scholar
  24. 24.
    Shan D, Qu Y, Song J (2007) Ionic doping effects on crystal structure and relaxation character in Na0.5Bi0.5TiO3 ferroelectric ceramics. J Mater Res 22:730–734CrossRefGoogle Scholar
  25. 25.
    Betal S, Dutta M, Cotica LF, Bhalla A, Guo R (2015) BaTiO3 coated CoFe2O4–Core–Shell magnetoelectric nanoparticles (CSMEN) characterization. Integr Ferroelectr 166:225–231CrossRefGoogle Scholar
  26. 26.
    Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc London, Ser A 240:599–642CrossRefGoogle Scholar
  27. 27.
    Ibusuki T, Kojima S, Kitakami O, Shimada Y (2001) Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE Trans Magn 37:2223–2225CrossRefGoogle Scholar
  28. 28.
    Geshev J, Pereira LG, Schmidt JE, Mikhov M (2001) Dependence of the magnetization and remanence of single-domain particles of the second cubic anisotropy constant. J Appl Phys 90:6243–6250CrossRefGoogle Scholar
  29. 29.
    Sakanas A, Grigalaitis R, Banys J, Curecheriu L, Mitoseriu L, Buscaglia V (2015) Microstructural influence on the broadband dielectric properties of BaTiO3–Ni0.5Zn0.5Fe2O4 core-shell composites: experiment and modeling. J Appl Phys 118:174106CrossRefGoogle Scholar
  30. 30.
    Cernea M, Vasile BS, Ciuchi IV, Iuga A, Alexandrescu E, Pintea J, Galassi C (2015) Synthesis, structural and electrical properties of BNT-BTCe@SiO2 core–shell heterostructure. Sci Adv Mater 7:2297–2305CrossRefGoogle Scholar
  31. 31.
    Cernea M, Andronescu E, Radu R, Fochi F, Galassi C (2010) Sol–gel synthesis and characterization of BaTiO3 doped-(Bi1/2Na1/2)TiO3 piezoelectric ceramics. J Alloy Compd 490:690–694CrossRefGoogle Scholar
  32. 32.
    Rahman A, Rafiq MA, Karim S, Maaz K, Siddique M, Hasan MM (2011) Semiconductor to metallic transition and polaron conduction in nanostructured cobalt ferrite. J Phys D Appl Phys 44:165404CrossRefGoogle Scholar
  33. 33.
    Sivakumar N, Narayanasamy A, Chinnasamy CN, Jeyadevan B (2007) Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite. J Phys Condens Mater 19:386201CrossRefGoogle Scholar
  34. 34.
    Maglia F, Tredici IG, Anselmi-Tamburini U (2013) Densification and properties of bulk nanocrystalline functional ceramics with grain size below 50 nm. J Eur Ceram Soc 33:1045–1066CrossRefGoogle Scholar
  35. 35.
    Craciun F, Cernea M, Fruth V, Zaharescu M, Atkinson I, Stanica N, Tanase L, Diamandescu L, Iuga A, Galassi C (2016) Novel multiferroic (Pb1−3x/2Ndx)(Ti0.98−yFeyMn0.02)O3 ceramics with coexisting ferroelectricity and ferromagnetism at ambient temperature. Mater Des 110:693–704CrossRefGoogle Scholar
  36. 36.
    Kalinin S, Bonnell D (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65:125408CrossRefGoogle Scholar
  37. 37.
    Wang JW, Zhao YG, Fan C, Sun XF, Rizwan S, Zhang S, Li PS, Lin Z, Yang YJ, Yan W (2013) Ferroelectric domain-controlled magnetic anisotropy in Co40Fe40B20/YMnO3 multiferroic heterostructure. Appl Phys Lett 102:102906CrossRefGoogle Scholar
  38. 38.
    Yang YT, Li J, Peng XL, Hong B, Wang XQ, Ge HL (2017) Electrical modulation of magnetism in multiferroic heterostructures at room temperature. J Mater Sci 52:3330–3336.  https://doi.org/10.1007/s10853-016-0620-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Cernea
    • 1
  • B. S. Vasile
    • 2
  • I. V. Ciuchi
    • 3
    • 4
  • V. A. Surdu
    • 2
  • C. Bartha
    • 1
  • A. Iuga
    • 1
  • P. Galizia
    • 3
  • C. Galassi
    • 3
  1. 1.National Institute of Materials PhysicsBucharest-MagureleRomania
  2. 2.University Politehnica of BucharestBucharestRomania
  3. 3.National Research Council of Italy - Institute of Science and Technology for Ceramics (CNR-ISTEC)FaenzaItaly
  4. 4.Faculty of PhysicsUniversity “Al. I. Cuza“IasiRomania

Personalised recommendations