Advertisement

Journal of Materials Science

, Volume 53, Issue 13, pp 9635–9649 | Cite as

Microwave absorption by watermelon-like microspheres composed of γ-Fe2O3, microporous silica and polypyrrole

  • Cuiping Li
  • Shengning Ji
  • Xiaohui Jiang
  • Geoffrey I. N. Waterhouse
  • Zhiming Zhang
  • Liangmin Yu
Electronic materials

Abstract

Uniform γ-Fe2O3/microporous SiO2/polypyrrole (Fe/m-SiO2/PPy) microspheres (MSs) with “watermelon-like” structures were successfully fabricated using cetyltrimethylammonium bromide (CTAB) as a pore-directing agent. In the “watermelon-like” microspheres, γ-Fe2O3 nanoparticles represented the seeds, m-SiO2 the pulp, and PPy the rind. Through synergistic harnessing of the magnetic loss properties of γ-Fe2O3 and the dielectric loss properties of the m-SiO2/PPy core/shell structure, the Fe/m-SiO2/PPy MSs displayed outstanding excellent electromagnetic wave absorption (EMWA) properties. The maximum reflection loss (RLmax) of Fe/m-SiO2/PPy was − 51.24 dB (7.44 GHz) with a thickness of 4.0 mm, with an effective absorption bandwidth (EAB) (RL < − 10 dB) of 4.16 GHz at a loading of 14.2 wt% in a paraffin wax matrix. These results conclusively demonstrate that Fe/m-SiO2/PPy MSs-containing composites are very efficient EMWA materials and that porous core/shell/shell structures offer a promising approach for the rational design of lightweight high-performance EMW absorbers.

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 41476059) and China Postdoctoral Science Foundation (No. 2016M600557).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

10853_2018_2262_MOESM1_ESM.docx (46 kb)
Supplementary material 1 (DOCX 45 kb)

References

  1. 1.
    Liu XF, Hao CC, Jiang H et al (2017) Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J Mater Chem C 5(15):3770–3778CrossRefGoogle Scholar
  2. 2.
    Melvin GJH, Ni QQ, Suzuki Y et al (2014) Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J Mater Sci 49(14):5199–5207.  https://doi.org/10.1007/s10853-014-8229-9 CrossRefGoogle Scholar
  3. 3.
    Liu PB, Huang Y, Yan J et al (2016) Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C 4(26):6362–6370CrossRefGoogle Scholar
  4. 4.
    Sun D, Zou Q, Wang Y et al (2014) Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6(12):6557–6562CrossRefGoogle Scholar
  5. 5.
    Wang Y, Han BQ, Chen N et al (2016) Enhanced microwave absorption properties of MnO2 hollow microspheres consisted of MnO2 nanoribbons synthesized by a facile hydrothermal method. J Alloys Compd 3(676):224–230Google Scholar
  6. 6.
    Zhang D, Cheng J, Yang X et al (2014) Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. J Mater Sci 49(20):7221–7230.  https://doi.org/10.1007/s10853-014-8429-3 CrossRefGoogle Scholar
  7. 7.
    Qiu J, Wang Y, Gu M (2007) Microwave absorption properties of substituted BaFe12O19/TiO2 nanocomposite multilayer film. J Mater Sci 42(1):166–169.  https://doi.org/10.1007/s10853-006-0919-5 CrossRefGoogle Scholar
  8. 8.
    He Q, Yuan T, Zhang X et al (2014) Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes. J Phys Chem C 118(42):24784–24796CrossRefGoogle Scholar
  9. 9.
    Li XA, Zhang B, Ju CH et al (2011) Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors. J Phys Chem C 115(115):12350–12357CrossRefGoogle Scholar
  10. 10.
    Qiao MT, Lei XF, Ma Y et al (2016) Well-defined core-shell Fe3O4@Polypyrrole composite microspheres with tunable shell thickness: synthesis and their superior microwave absorption performance in the Ku band. Ind Eng Chem Res 55(22):6263–6275CrossRefGoogle Scholar
  11. 11.
    Huo J, Wang L, Yu H (2009) Polymeric nanocomposites for electromagnetic wave absorption. J Mater Sci 44(15):3917–3927.  https://doi.org/10.1007/s10853-009-3561-1 CrossRefGoogle Scholar
  12. 12.
    Liu QT, Liu XF, Feng HB et al (2017) Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem Eng J 314:320–327CrossRefGoogle Scholar
  13. 13.
    Liu Q, Cao B, Feng C et al (2012) High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles. Compos Sci Technol 72(13):1632–1636CrossRefGoogle Scholar
  14. 14.
    Zheng YW, Wang XX, Wei S et al (2017) Fabrication of porous graphene-Fe3O4 hybrid composites with outstanding microwave absorption performance. Compos A 95:237–247CrossRefGoogle Scholar
  15. 15.
    Nanni F, Travaglia P, Valentini M (2009) Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos Sci Technol 69(3–4):485–490CrossRefGoogle Scholar
  16. 16.
    Zhang A, Tang M, Cao X et al (2014) The effect of polyethylenimine on the microwave absorbing properties of a hybrid microwave absorber of Fe3O4/MWNTs. J Mater Sci 49(13):4629–4635.  https://doi.org/10.1007/s10853-014-8165-8 CrossRefGoogle Scholar
  17. 17.
    Chen YJ, Zhang F, Zhao G (2010) Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods. J Phys Chem C 114(20):9239–9244CrossRefGoogle Scholar
  18. 18.
    Wang G, Chang Y, Wang L (2012) Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Adv Powder Technol 23(6):861–865CrossRefGoogle Scholar
  19. 19.
    Wu ZC, Tan DG, Tian K et al (2017) Facile preparation of core-shell Fe3O4@Polypyrrole composites with superior electromagnetic wave absorption properties. J Phys Chem C 121(29):15784–15792CrossRefGoogle Scholar
  20. 20.
    Zhao B, Guo XQ, Zhao WY et al (2016) Yolk-shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Interfaces 8(42):28917–28925CrossRefGoogle Scholar
  21. 21.
    Lv H, Liang X, Ji G et al (2015) Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl Mater Interfaces 7(18):9776–9783CrossRefGoogle Scholar
  22. 22.
    Zhou L, Gao C, Xu WJ et al (2010) Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers. Langmuir 26(13):11217–11225CrossRefGoogle Scholar
  23. 23.
    Guo XH, Deng YH, Gu D et al (2009) Synthesis and microwave absorption of uniform hematite nanoparticle and their core-shell mesoporous silica nanocomposites. J Mater Chem 19(37):6706–6712CrossRefGoogle Scholar
  24. 24.
    Qiang R, Du YC, Wang Y et al (2016) Rational design of yolk-shell C@C Microspheres for the effective enhancement in microwave absorption. Carbon 98:599–606CrossRefGoogle Scholar
  25. 25.
    Micheli D, Apollo C, Pastore R et al (2010) X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol 70(2):400–409CrossRefGoogle Scholar
  26. 26.
    Ji SN, Zhang ZM, Ji XH et al (2017) Synthesis and microwave absorbing properties of γ-Fe2O3-SiO2-poly (3,4-ethylenedioxythiophene) core-shell-shell nanocomposites. J Mater Sci 52(20):12358–12369.  https://doi.org/10.1007/s10853-017-1337-6 CrossRefGoogle Scholar
  27. 27.
    Zhang ZM, Li Q, Yu LM et al (2011) Highly conductive polypyrrole/γ-Fe2O3 nanospheres with good magnetic properties obtained through an improved chemical one-step method. Macromolecules 44(12):4610–4615CrossRefGoogle Scholar
  28. 28.
    Zhang L, Liu TQ, Chen Y et al (2016) Magnetic conducting polymer/mesoporous SiO2 yolk/shell nanomaterials: multifunctional nanocarriers for controlled release of doxorubicin. RSC Adv 6(11):8572–8579CrossRefGoogle Scholar
  29. 29.
    Liang CY, Gou YJ, Wu LN et al (2016) Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation. J Phys Chem C 120(24):12967–12973CrossRefGoogle Scholar
  30. 30.
    Zhang J, Wang XW (2018) Microwave absorbing property and preparation of CoNi@SiO2@PPy composite in X-band. J Mater Sci Mater Electron 29(2):1592–1599CrossRefGoogle Scholar
  31. 31.
    Tian C, Du Y, Xu P et al (2015) Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl Mater Interfaces 7(36):20090–20099CrossRefGoogle Scholar
  32. 32.
    Li WZ, Qiu T, Wang LL et al (2013) Preparation and electromagnetic properties of core/shell Polystyrene@Polypyrrole@Nickel composite microspheres. ACS Appl Mater Interfaces 5(3):883–891CrossRefGoogle Scholar
  33. 33.
    Yin YC, Liu XF, Wei XJ et al (2016) Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces 8(50):34686–34698CrossRefGoogle Scholar
  34. 34.
    Zhou H, Wang JC, Zhuang JD et al (2013) A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale 5(24):12502–12511CrossRefGoogle Scholar
  35. 35.
    Jiang LW, Wang ZH, Geng DY et al (2016) Carbon-encapsulated Fe nanoparticles embedded in organic polypyrrole polymer as a high performance microwave absorber. J Phys Chem C 120(49):28320–28329CrossRefGoogle Scholar
  36. 36.
    Li YN, Zhao Y, Lu XY et al (2016) Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res 9(7):2034–2045CrossRefGoogle Scholar
  37. 37.
    Wang G, Gao Z, Tang S et al (2012) Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12):11009–11017CrossRefGoogle Scholar
  38. 38.
    Feng JT, Wang YC, Hou YH et al (2017) Tunable design of yolk-shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption. Inorg Chem Front 4:935–945CrossRefGoogle Scholar
  39. 39.
    Jiang JJ, Li D, Geng DY et al (2014) Microwave absorption properties of core double-shell FeCo/C/BaTiO3 nanocomposites. Nanoscale 6(8):3967–3971CrossRefGoogle Scholar
  40. 40.
    Lv H, Ji GB, Zhang HQ et al (2015) CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci Rep 5:18249–18259CrossRefGoogle Scholar
  41. 41.
    Sun Y, Xu JL, Qiao W et al (2016) Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl Mater Interfaces 8(46):31878–31886CrossRefGoogle Scholar
  42. 42.
    Zhang Z, Deng J, Shen J et al (2007) Chemical one step method to prepare polyaniline nanofibers with electromagnetic function. Macromol Rapid Commun 28(5):585–590CrossRefGoogle Scholar
  43. 43.
    Nanni F, Travaglia P, Valentini M (2009) Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos Sci Technol 69(3–4):485–490CrossRefGoogle Scholar
  44. 44.
    Wu F, Xie A, Sun M et al (2015) Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J Mater Chem A 3(27):14358–14369CrossRefGoogle Scholar
  45. 45.
    Wang YF, Chen DL, Yin X et al (2015) Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 7(47):26226–26234CrossRefGoogle Scholar
  46. 46.
    Yang H, Cao W, Zhang D et al (2015) NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces 7(13):7073–7077CrossRefGoogle Scholar
  47. 47.
    Zhang ZL, Ji ZJ, Duan YP et al (2013) The superior electromagnetic properties of carbonyl-iron/Fe91.2Si3.1P2.9Sb2.8 composites powder and impedance match mechanism. J Mater Sci Mater Electron 24(3):968–973CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cuiping Li
    • 1
    • 2
  • Shengning Ji
    • 1
    • 2
  • Xiaohui Jiang
    • 1
    • 2
  • Geoffrey I. N. Waterhouse
    • 3
  • Zhiming Zhang
    • 1
    • 2
  • Liangmin Yu
    • 1
    • 2
  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationOcean University of ChinaQingdaoChina
  2. 2.Qingdao Collaborative Innovation Center of Marine Science and TechnologyQingdaoChina
  3. 3.School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations