Journal of Materials Science

, Volume 53, Issue 13, pp 9816–9822 | Cite as

Structure, glass-forming ability, magnetic and cryogenic magneto-caloric properties in the amorphous Ni30Co10RE60 (RE = Ho and Tm) ribbons

  • Dan Guo
  • Yikun Zhang
  • Shuhua Geng
  • Hui Xu
  • Zhongming Ren
  • Gerhard Wilde
Metals

Abstract

Amorphousized Ni30Co10RE60 (RE = Ho and Tm) ribbons have been prepared by melt-spinning technique, and their microstructure, glass formation ability, magnetic properties and cryogenic magneto-caloric effect (MCE) were systematically investigated. Based on the X-ray diffraction and high-resolution transmission electron microscopic, the Ni30Co10Ho60 and Ni30Co10Tm60 ribbons show fully amorphous structure. The ribbons are confirmed to reveal a second-order magnetic phase transition (paramagnetic to ferromagnetic) by the magnetization measurements and Arrott plot analysis. A considerable MCE is found in Ni30Co10Ho60 and Ni30Co10Tm60 ribbons around their respective Curie temperatures (TC) of 22.7 and 6.3 K, respectively. Under a magnetic field change (∆H) of 0–5 T, the magnetic entropy change (− ∆SM) reaches 12.5 and 14.2 J/kg K, and the relative cooling power reaches 447 and 242 J/kg for Ni30Co10Ho60 and Ni30Co10Tm60, respectively.

Notes

Acknowledgements

The present work was supported by the National Natural Science Foundation of China (Nos. 51501036 and 51690162), Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai University, and United Innovation Program of Shanghai Commercial Aircraft Engine (Nos. AR910 and AR911).

References

  1. 1.
    Kitanovski A, Egolf PW (2010) Innovative ideas for future research on magnetocaloric technologies. Int J Refrig 33:449–464CrossRefGoogle Scholar
  2. 2.
    Gschneidner KA Jr, Pecharsky VK (1997) Giant magnetocaloric effect in Gd5(Si2Ge2). Phys Rev Lett 78:4494–4497CrossRefGoogle Scholar
  3. 3.
    Shen BG, Sun JR, Hu FX, Zhang HW, Cheng ZH (2009) Recent progress in exploring magnetocaloric materials. Adv Mater 21:4545–4564CrossRefGoogle Scholar
  4. 4.
    Li LW (2016) Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals. Chin Phys B 25:037502CrossRefGoogle Scholar
  5. 5.
    Franco V, Blazquez JS, Ingale B, Conde A (2012) The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Ann Rev Mater Res 42:305–342CrossRefGoogle Scholar
  6. 6.
    Yang Y, Zhang YK, Xu X, Geng SH, Hou L, Li X, Ren Z, Wilde G (2017) Magnetic and magnetocaloric properties of the ternary cadmium based intermetallic compounds of Gd2Cu2Cd and Er2Cu2Cd. J Alloys Compd 692:665–669CrossRefGoogle Scholar
  7. 7.
    Li LW, Kadonaga M, Huo D, Qian Z, Namiki T, Nishimura K (2012) Low field giant magnetocaloric effect in RNiBC (R = Er and Gd) and enhanced refrigerant capacity in its composite materials. Appl Phys Lett 101:122401CrossRefGoogle Scholar
  8. 8.
    Li LW, Yi Y, Su K, Qi Y, Huo DX, Pöttgen R (2016) Magnetic properties and large magnetocaloric effect in Ho2Cu2In and Ho2Au2In compounds. J Mater Sci 51:5421–5426.  https://doi.org/10.1007/s10853-016-9845-3 CrossRefGoogle Scholar
  9. 9.
    Zhang YK, Yang Y, Hou CJ, Guo D, Wang J, Geng SH, Li X, Ren ZM, Wilde G (2018) Metamagnetic transition and magnetocaloric properties in antiferromagnetic Ho2Ni2Ga and Tm2Ni2Ga compounds. Intermetallics 94:17–21CrossRefGoogle Scholar
  10. 10.
    Li L, Hu G, Qi Y, Umehara I (2017) Hydrostatic pressure effect on magnetic phase transition and magnetocaloric effect of metamagnetic TmZn compound. Sci Rep 7:42908CrossRefGoogle Scholar
  11. 11.
    Li LW, Yuan Y, Qi Y, Wang Q, Zhou S (2018) Achievement of a table-like magnetocaloric effect in the dual-phase ErZn2/ErZn composite. Mater Res Lett 6:67–71CrossRefGoogle Scholar
  12. 12.
    Zhang YK, Li HD, Wang J, Li X, Ren ZM, Wilde G (2018) Structure and cryogenic magnetic properties in Ho2BaCuO5 cuprate. Ceram Int 44:1991–1994CrossRefGoogle Scholar
  13. 13.
    Li LW, Su K, Huo D (2018) Large reversible normal and inverse magneto-caloric effects in the RE2BaCuO5 (RE = Dy and Er) compounds. J Alloys Compd 735:773–776CrossRefGoogle Scholar
  14. 14.
    Zhang YK, Guo D, Yang Y, Geng S, Li X, Ren Z, Wilde G (2017) Magnetism and magnetocaloric effect in the RE2CuSi3 (RE = Dy and Ho) compounds. J Alloys Compd 702:546–550CrossRefGoogle Scholar
  15. 15.
    Li L, Namiki T, Huo DX, Qian ZH, Nishimura K (2013) Two successive magnetic transitions induced large refrigerant capacity in HoPdIn compound. Appl Phys Lett 103:222405CrossRefGoogle Scholar
  16. 16.
    Li LW, Nishimura K, Yamane H (2009) Giant reversible magnetocaloric effect in antiferromagnetic GdCo2B2 compound. Appl Phys Lett 94:102509CrossRefGoogle Scholar
  17. 17.
    Li L, Huo D, Su K, Pöttgen R (2018) Magnetic properties and large magnetic entropy change in rare earth-rich cadmium compounds of RE4CoCd (RE = Tm and Ho). Intermetallics 93:343–346CrossRefGoogle Scholar
  18. 18.
    Li LW, Nishimura K (2009) Giant reversible magnetocaloric effect in antiferromagnetic superconductor Dy0.9Tm0.1Ni2B2C compound. Appl Phys Lett 95:132505CrossRefGoogle Scholar
  19. 19.
    Wang WH (2009) Bulk metallic glasses with functional physical properties. Adv Mater 21:4524–4544CrossRefGoogle Scholar
  20. 20.
    Zhang B, Zhao DQ, Pan MX, Wang WH, Greer AL (2005) Amorphous metallic plastic. Phys Rev Lett 94:205502CrossRefGoogle Scholar
  21. 21.
    Inoue A, Zhang T, Masumoto T (1990) Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater Trans JIM 31:425–428CrossRefGoogle Scholar
  22. 22.
    Luo Q, Zhao DQ, Pan MX, Wang WH (2007) Magnetocaloric effect of Ho-, Dy-, and Er-based bulk metallic glasses in helium and hydrogen liquefaction temperature range. Appl Phys Lett 90:211903CrossRefGoogle Scholar
  23. 23.
    Liang L, Hui X, Zhang CM, Lu ZP, Chen GL (2008) A novel Ho36Dy20Al24Co20 bulk metallic glass with large magnetocaloric effect. Solid State Commun 146:49–52CrossRefGoogle Scholar
  24. 24.
    Yuan Y, Wu Y, Tong X, Zhang H, Wang H, Liu XJ, Ma L, Suo HL, Lu ZP (2017) Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater 125:481–489CrossRefGoogle Scholar
  25. 25.
    Qin FX, Bingham NS, Wang H, Peng HX, Sun JF, Franco V, Yu SC, Srikanth H, Phan MH (2013) Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction. Acta Mater 61:1284–1293CrossRefGoogle Scholar
  26. 26.
    Zheng Q, Zhang L, Du J (2017) Magnetic entropy change in Gd95Fe2.8Al2.2 amorphous/nanocrystalline ribbons. Scr Mater 130:170–173CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Guo D, Li H, Geng Shuhua, Wang J, Li X, Ren ZM, Wilde G (2018) Low field induced large magnetic entropy change in the amorphousized Tm60Co20Ni20 ribbon. J Alloys Compd 733:40–44CrossRefGoogle Scholar
  28. 28.
    Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12:16–17CrossRefGoogle Scholar
  29. 29.
    Bingham NS, Phan MH, Srikanth H, Torija MA, Leighton C (2009) Magnetocaloric effect and refrigerant capacity in charge-ordered manganites. J Appl Phys 106:023909CrossRefGoogle Scholar
  30. 30.
    Huo JT, Zhao DQ, Bai HY, Axinte E, Wang WH (2013) Giant magnetocaloric effect in Tm-based bulk metallic glasses. J Noncryst Solids 359:1–4CrossRefGoogle Scholar
  31. 31.
    Luo Q, Tang M, Shen J (2016) Tuning the magnetocaloric response of Er-based metallic glasses by varying structural order in disorder. J Magn Magn Mater 401:406–411CrossRefGoogle Scholar
  32. 32.
    Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner K Jr, Osborne M, Anderson I (1998) Description and performance of a near-room temperature magnetic refrigerator. Adv Cryog Eng 43:1759–1766CrossRefGoogle Scholar
  33. 33.
    Smali A, Chahine R (1997) Composite materials for Ericsson-like magnetic refrigeration cycle. J Appl Phys 81:824–829CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Hou L, Ren Z, Li X, Wilde G (2016) Magnetic properties and magnetocaloric effect in TmZnAl and TmAgAl compounds. J Alloys Compd 565:635–639CrossRefGoogle Scholar
  35. 35.
    Li L, Niehaus O, Kersting M, Pöttgen R (2014) Reversible table-like magnetocaloric effect in Eu4PdMg over a very large temperature span. Appl Phys Lett 104:092416CrossRefGoogle Scholar
  36. 36.
    Yi Y, Li LW, Su K, Qi Y, Huo D (2017) Large magnetocaloric effect in a wide temperature range induced by two successive magnetic phase transitions in Ho2Cu2Cd compound. Intermetallics 80:22–25CrossRefGoogle Scholar
  37. 37.
    Li LW, Yuan Y, Zhang Y, Pöttgen R, Zhou S (2015) Magnetic phase transitions and large magnetic entropy change with a wide temperature span in HoZn. J Alloys Compd 643:147–151CrossRefGoogle Scholar
  38. 38.
    Caballero-Flores R, Franco V, Aonde A, Knipling KE, Willard MA (2011) Optimization of the refrigerant capacity in multiphase magnetocaloric materials. Appl Phys Lett 98:102505CrossRefGoogle Scholar
  39. 39.
    Chaturvedi A, Stefanoski S, Phan MH, Nolas GS, Srikanth H (2011) Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30–EuO composite materials. Appl Phys Lett 99:162513CrossRefGoogle Scholar
  40. 40.
    Franco V, Blazquez JS, Conde A (2006) Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl Phys Lett 89:222512CrossRefGoogle Scholar
  41. 41.
    Franco V, Conde A, Romero-Enrique JM, Blazquez JS (2008) A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J Phys Condens Matter 20:285207CrossRefGoogle Scholar
  42. 42.
    Li LW, Nishimura K, Hutchison WD, Qian ZH, Huo DX, Namiki T (2012) Giant reversible magnetocaloric effect in ErMn2Si2 compound with a second order magnetic phase transition. Appl Phys Lett 100:152403CrossRefGoogle Scholar
  43. 43.
    Li LW, Yuan Y, Zhang Y, Namiki T, Nishimura K, Pöttgen R, Zhou S (2015) Giant low field magnetocaloric effect and field-induced metamagnetic transition in TmZn. Appl Phys Lett 107:132401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dan Guo
    • 1
  • Yikun Zhang
    • 1
  • Shuhua Geng
    • 1
  • Hui Xu
    • 1
  • Zhongming Ren
    • 1
  • Gerhard Wilde
    • 2
  1. 1.State Key Laboratory of Advanced Special Steels, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and EngineeringShanghai UniversityShanghaiChina
  2. 2.Institute of Materials PhysicsUniversity of MünsterMünsterGermany

Personalised recommendations