Journal of Materials Science

, Volume 53, Issue 13, pp 9806–9815 | Cite as

Copper–SiC whiskers composites with interface optimized by Ti3SiC2

  • Mian Li
  • Fanyan Chen
  • Xiaoyang Si
  • Ji Wang
  • Shiyu Du
  • Qing Huang


In the present work, we propose Ti3SiC2 as the interlayer material to improve the interfacial bonding properties of SiC whiskers-reinforced copper matrix composites. For the first time, Ti3SiC2 coating was in situ fabricated on the surface of SiC whiskers in a molten salt bath. Ti3SiC2-coated SiC whiskers- and bare SiC whiskers-reinforced copper matrix composites were fabricated by spark plasma sintering. The influence of the Ti3SiC2 interlayer on the interfacial properties, mechanical properties, and thermal conductivity of the composites was investigated. The results show that the Ti3SiC2 interlayer can largely improve the interfacial bonding properties of the composites. Therefore, the composites reinforced with Ti3SiC2-coated SiC whiskers exhibit much higher tensile strength than the composites reinforced with bare SiC whiskers. The results also show that the Ti3SiC2 interlayer could decrease the thermal conductivity of the composites in certain extent.



The authors sincerely acknowledge the National Natural Science Foundation of China (91426304) and the Ningbo Municipal Key Project (2014S10001) for the financial support, Preferred Foundation of Postdoctoral Scientific Research Project of Zhejiang Province (BSH1502159).


  1. 1.
    Merola M et al (2015) Engineering challenges and development of the ITER blanket system and divertor. Fusion Eng Des 96–97:34–41CrossRefGoogle Scholar
  2. 2.
    Iveković A, Novak S, Dražić G, Blagoeva D, de Vicente SG (2013) Current status and prospects of SiCf/SiC for fusion structural applications. J Eur Ceram Soc 33:1577–1589CrossRefGoogle Scholar
  3. 3.
    Katoh Y et al (2014) Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J Nucl Mater 448:448–476CrossRefGoogle Scholar
  4. 4.
    Prosviryakov AS (2015) SiC content effect on the properties of Cu–SiC composites produced by mechanical alloying. J Alloys Compd 632:707–710CrossRefGoogle Scholar
  5. 5.
    Faber KT (1997) Ceramic composite interfaces: properties and design. Annu Rev Mater Sci 27:499–524CrossRefGoogle Scholar
  6. 6.
    Lee JC, Ahn JP, Shim JH, Shi Z, Lee HI (1999) Control of the interface in SiC/Al composites. Scr Mater 41:895–900CrossRefGoogle Scholar
  7. 7.
    Nikolopoulos P, Agatho Pou Los S, Angelopoulos GN, Naoumidis A, Grubmeier H (1992) Wettability and interfacial energies in SiC-liquid metal systems. J Mater Sci 27:139–145. CrossRefGoogle Scholar
  8. 8.
    Rado C, Drevet B, Eustathopoulos N (2000) Role of compound formation in reactive wetting: the Cu/SiC system. Acta Mater 48:4483–4491CrossRefGoogle Scholar
  9. 9.
    Liu GW, Muolo ML, Valenza F, Passerone A (2010) Survey on wetting of SiC by molten metals. Ceram Int 36:1177–1188CrossRefGoogle Scholar
  10. 10.
    Leon CA, Mendoza-Suarez G, Drew RAL (2006) Wettability and spreading kinetics of molten aluminum on copper-coated ceramics. J Mater Sci 41:5081–5087. CrossRefGoogle Scholar
  11. 11.
    Leon CA, Drew RAL (2002) The influence of nickel coating on the wettability of aluminum on ceramics. Compos A Appl Sci Manuf 33:1429–1432CrossRefGoogle Scholar
  12. 12.
    Barlak M et al (2009) Wettability improvement of carbon ceramic materials by mono and multi energy plasma pulses. Surf Coat Technol 203:2536–2540CrossRefGoogle Scholar
  13. 13.
    Zhan Y, Zhang G (2003) The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites. Mater Lett 57:4583–4591CrossRefGoogle Scholar
  14. 14.
    Luo X et al (2009) Effect of nickel on the interface and mechanical properties of SiCf/Cu composites. J Alloys Compd 469:237–243CrossRefGoogle Scholar
  15. 15.
    Sun ZM (2011) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56:143–166CrossRefGoogle Scholar
  16. 16.
    Barsoum MW (2000) The MN + 1AXN phases: a new class of solids. Prog Solid State Chem 28:201–281CrossRefGoogle Scholar
  17. 17.
    Barsoum MW, El-Raghy T (1996) Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J Am Ceram Soc 79:1953–1956CrossRefGoogle Scholar
  18. 18.
    Lu JR, Zhou Y, Zheng Y, Li HY, Li SB (2015) Interface structure and wetting behaviour of Cu/Ti3 SiC2 system. Adv Appl Ceram 114:39–44CrossRefGoogle Scholar
  19. 19.
    Dezellus O et al (2010) Wettability of Ti3SiC2 by Ag–Cu and Ag–Cu–Ti melts. J Mater Sci 45:2080–2084. CrossRefGoogle Scholar
  20. 20.
    Ai T et al (2014) Processing, microstructural characterization and mechanical properties of in situ Ti3AlC2/TiAl3 composite by hot pressing. Mater Sci Eng A 610:297–300CrossRefGoogle Scholar
  21. 21.
    Zhang J, Wang JY, Zhou YC (2007) Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites. Acta Mater 55:4381–4390CrossRefGoogle Scholar
  22. 22.
    Barsoum MW (2006) Physical properties of the MAX phases. In: Buschow KHJ, Cahn RW, Flemings MC, Kramer EJ, Mahajan S, Veyssiere P (eds) Encyclopedia of materials: science and technology. Elsevier, Amsterdam.Google Scholar
  23. 23.
    Fan X et al (2015) Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration. Compos Sci Technol 115:21–27CrossRefGoogle Scholar
  24. 24.
    El-Raghy T, Zavaliangos A, Barsoum MW, Kalidindi SR (1997) Damage mechanisms around hardness indentation in Ti3SiC2. J Am Ceram Soc 80:513–516CrossRefGoogle Scholar
  25. 25.
    Fashandi H et al (2015) Single-step synthesis process of Ti3SiC2 ohmic contacts on 4H–SiC by sputter-deposition of Ti. Scr Mater 99:53–56CrossRefGoogle Scholar
  26. 26.
    Liang P et al (1998) Experimental investigation and thermodynamic calculation of the Ti–Si–C system. Thermochim Acta 314:87–110CrossRefGoogle Scholar
  27. 27.
    van Loo FJJ, Kodentsov AA (1998) Interfacial microchemistry: reactions in inorganic systems. Pure Appl Chem 70:501–508CrossRefGoogle Scholar
  28. 28.
    Barsoum MW (2000) Reaction layers around SiC particles in Ti: an electron microscopy study. Scr Mater 43:285–286CrossRefGoogle Scholar
  29. 29.
    Lin ZJ, Zhuo MJ, Zhou YC, Li MS, Wang JY (2006) Microstructural relationships between compounds in the Ti–Si–C system. Scr Mater 55:445–448CrossRefGoogle Scholar
  30. 30.
    Klein M, Holy J, Williams W (1978) Raman scattering induced by carbon vacancies in TiCx. Phys Rev B 17:1546–1556CrossRefGoogle Scholar
  31. 31.
    Men J et al (2016) Growth of SiC nanowires by low pressure chemical vapor infiltration using different catalysts. J Eur Ceram Soc 36:3615–3625CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Zhou YC (2000) Mechanical properties of dispersion strengthened copper. Z Metalkd 91:585–588Google Scholar
  33. 33.
    Nechiche M et al (2016) Synthesis and characterization of a new (Ti1−ε, Cuε)3(Al, Cu)C2 MAX phase solid solution. J Eur Ceram Soc 3:459–466Google Scholar
  34. 34.
    Huang Z, Bonneville J, Zhai H, Gauthier-Brunet V, Dubois S (2014) Microstructural characterization and compression properties of TiC 0.61/Cu(Al) composite synthesized from Cu and Ti3AlC2 powders. J Alloys Compd 602:53–57CrossRefGoogle Scholar
  35. 35.
    Snead LL et al (2007) Handbook of SiC properties for fuel performance modeling. J Nucl Mater 371:329–377CrossRefGoogle Scholar
  36. 36.
    Zhan G, Mitomo M, Xie R, Mukherjee AK (2001) Thermal and electrical properties in plasma-activation-sintered silicon carbide with rare-earth-oxide additives. J Am Ceram Soc 50:2448–2450Google Scholar
  37. 37.
    Zhou Y, Hirao K, Watari K, Yamauchi Y, Kanzaki S (2004) Thermal conductivity of silicon carbide densified with rare-earth oxide additives. J Eur Ceram Soc 24:265–270CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mian Li
    • 1
    • 2
  • Fanyan Chen
    • 1
  • Xiaoyang Si
    • 1
  • Ji Wang
    • 1
  • Shiyu Du
    • 1
  • Qing Huang
    • 1
  1. 1.Engineering Laboratory of Specialty Fibers and Nuclear Energy Materials, Ningbo Institute of Industrial TechnologyChinese Academy of SciencesNingboChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations