Journal of Materials Science

, Volume 53, Issue 13, pp 9401–9410 | Cite as

First-principles calculations of crystal structure, electronic structure and optical properties of Ba2RETaO6 (RE = Y, La, Pr, Sm, Gd)

Ceramics

Abstract

The crystal structure, electronic structure and optical properties of Ba2RETaO6 (RE = Y, La, Pr, Sm, Gd) have been studied by first-principles calculation. The calculated lattice parameters are in good agreement with the previously reported values. With increasing the atomic number of RE (i.e., the number of 4f electrons), the energy level of RE 4f bands becomes lower continuously. The relationship between the electronic structure and optical properties is explored based on first-principles calculation. The electron transitions between O 2p states, RE 4f states and Ta 5d states have a key effect on optical properties such as dielectric function, refractive index, absorption coefficient and reflectivity. The phase structures have great influence on the optical properties of Ba2SmTaO6 and Ba2GdTaO6, and the big variation of reflectivity induced from phase transition makes them have potential applications in the infrared radiation protection area.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 51302013). The authors are also very grateful to the Analytical and Testing Center of Beijing Normal University and the Chinese Academy physicochemical for providing the experimental support.

References

  1. 1.
    Zurmühlen R, Petzelt J, Kamba S, Kozlov G, Volkov A, Gorshunov B, Dube D, Tagantsev A et al (1995) Dielectric spectroscopy of Ba(B’1/2B’’1/2)O3 complex perovskite ceramics: correlations between ionic parameters and microwave dielectric properties. I. Infrared reflectivity study (1012–1014 Hz). J Appl Phys 77(10):5341–5350CrossRefGoogle Scholar
  2. 2.
    Korchagina SK, Shevchuk YA (2006) Low-frequency and microwave dielectric properties of Ba2LnTaO6, (Ln = La, Pr, Sm, Dy, Ce, Gd, Nd, Tm, Tb) ceramics. Inorg Mater 42(1):64–67CrossRefGoogle Scholar
  3. 3.
    Babu TGN, Koshy J (1997) Development and dielectric properties of Ba2−xSrxDyTaO6 (x = 0, 1, and 2) substrates for YBa2Cu3O7-δ films. J Solid State Chem 133(2):522–528CrossRefGoogle Scholar
  4. 4.
    Machida M, Murakami S, Kijima T, Matsushima S, Arai M (2001) ChemInform Abstract: photocatalytic property and electronic structure of lanthanide tantalates, LnTaO4 (Ln = La, Ce, Pr, Nd and Sm). J Phys Chem B 105(16):3289–3294CrossRefGoogle Scholar
  5. 5.
    Machida M, Yabunaka JI, Kijima T, Matsushima S, Arai M (2001) Electronic structure of layered tantalates photocatalysts, RbLnTa2O7 (Ln = La, Pr, Nd, and Sm). Int J Inorg Mater 3(6):545–550CrossRefGoogle Scholar
  6. 6.
    Doi Y, Hinatsu Y (2001) Magnetic properties of ordered perovskites Ba2LnTaO6 (Ln = Y, lanthanides). J Phys Condens Matter 13(19):4191–4202CrossRefGoogle Scholar
  7. 7.
    Saines PJ, Spencer JR, Kennedy BJ, Avdeev M (2007) Structures and crystal chemistry of the double perovskites Ba2LnB′O6, (Ln = lanthanide B′ = Nb5+, and Ta5+): part I. Investigation of Ba2LnTaO6, using synchrotron X-ray and neutron powder diffraction. J Solid State Chem 180(11):2991–3000CrossRefGoogle Scholar
  8. 8.
    Saines PJ (2008) Structural studies of lanthanide double perovskites. The University of Sydney [thesis]Google Scholar
  9. 9.
    Clark SJ (2005) First principles methods using CASTEP. Z Kristallogr 220(5/6):567–570Google Scholar
  10. 10.
    Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895CrossRefGoogle Scholar
  11. 11.
    Perdew JP, Burke K, Ernzerhof M (1996) Errata: generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  12. 12.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192CrossRefGoogle Scholar
  13. 13.
    Head JD, Zerner MC (1985) A Broyden–Fletcher–Goldfarb–Shanno optimization procedure for molecular geometries. Chem Phys Lett 122(3):264–270CrossRefGoogle Scholar
  14. 14.
    Hammer B, Hansen LB, Nørskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59(11):7413–7421CrossRefGoogle Scholar
  15. 15.
    Babu TGN, Koshy J (1996) Ba2RETaO6 (RE = Pr, Nd, Eu, and Dy), a group of chemically stable substrates for YBa2Cu3O7−δ films. J Solid State Chem 126(2):202–207CrossRefGoogle Scholar
  16. 16.
    James J, Sankar M, Kumar SS, Nair KVO (2004) Preparation and properties of Ba2−xSrxSmTaO6 (x = 0–2): a group of new perovskite materials. Mater Chem Phys 83(2–3):328–333CrossRefGoogle Scholar
  17. 17.
    Zhou WL, Zhang QL, Gao JY, Liu WP, Ding LH, Yin ST (2011) Structures and luminescence properties of Yb3+ in the double perovskites Ba2YB’O6 (B’ = Ta5+, Nb5+) phosphors. Chin Phys B 20(1):493–500Google Scholar
  18. 18.
    Ghosh B, Dutta A, Shannigrahi S, Sinha TP (2015) Photophysical electronic structure of double-perovskites A2GdTaO6 (A = Ba and Sr). J Alloys Compd 648:111–115CrossRefGoogle Scholar
  19. 19.
    Khadraoui Z, Bouzidi C, Horchani-Naifer K, Ferid M (2014) Crystal structure, energy band and optical properties of dysprosium monophosphate DyPO4. J Alloys Compd 45(617):281–286CrossRefGoogle Scholar
  20. 20.
    Wuilloud E, Delley B, Schneider WD, Baer Y (1984) Spectroscopic evidence for localized and extended F-symmetry states in CeO2. Phys Rev Lett 53(2):202–205CrossRefGoogle Scholar
  21. 21.
    Bouhemadou A, Djabi F, Khenata R (2008) First principles study of structural, elastic, electronic and optical properties of the cubic perovskite BaHfO3. Phys Lett A 372(24):4527–4531CrossRefGoogle Scholar
  22. 22.
    Gillen R, Clark SJ, Robertson J (2012) The nature of the electronic band gap in lanthanide oxides. Phys Rev B Condens Matter 87(12):3939–3952Google Scholar
  23. 23.
    Machida M, Murakami S, Kijima T, Matsushima S, Arai M (2001) Photocatalytic property and electronic structure of lanthanide tantalates, LnTaO4 (Ln = La, Ce, Pr, Nd, and Sm). J Phys Chem B 105(16):3289–3294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.National Key Laboratory of Science and Technology on Materials Under Shock and ImpactBeijingChina

Personalised recommendations