Journal of Materials Science

, Volume 53, Issue 13, pp 9611–9626 | Cite as

Theoretical investigations of Ge1−xSn x alloys (x = 0, 0.333, 0.667, 1) in P42/ncm phase

  • Wei Zhang
  • Changchun Chai
  • Qingyang Fan
  • Kaiqiang Weng
  • Yintang Yang
Electronic materials


The structural, mechanical, anisotropic and electronic properties of Ge, Sn and their alloys (Ge0.667Sn0.333 and Ge0.333Sn0.667) in P42/ncm phase were studied in the framework of the density functional theory. In the present work, the lattice parameters increase with the increased tin concentration, whereas the elastic constants and elastic modulus of Ge1−xSn x alloys (x = 0, 0.333, 0.667, 1) in P42/ncm phase decrease with the increased tin concentration. A novel Sn allotrope with remarkable stability (the energy is higher than Sn in diamond phase only 24.4 meV per atom) in P42/ncm phase is first proposed in the present work, and it is a quasi-direct band gap semiconductor material with bang gap of 1.02 eV. The dynamically, mechanically and thermodynamically stable forms of P42/ncm-Sn and the Ge–Sn alloys in P42/ncm phase are proved by phonon spectra, elastic constants, formation enthalpy and cohesive energies. The universal elastic anisotropy index AU illustrates that the anisotropy of Ge1−xSn x alloys (x = 0, 0.333, 0.667, 1) in P42/ncm phase increases with the increasing percentage of the tin composition. To obtain the details of the anisotropy, the Young’s modulus, bulk modulus, shear modulus and Poisson’s ratio are also systematically investigated. The electronic band structures of Ge1−xSn x alloys (x = 0, 0.333) in P42/ncm phase with HSE06 hybrid functional show that both of them are indirect band gap semiconductors, while Ge0.333Sn0.667 and Sn in the P42/ncm phase show that they are quasi-direct band gap semiconductor materials.



This work was supported by the National Natural Science Foundation of China (No. 61474089).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Geological S (2008) Germanium—statistics and information. US Geological Survey, Mineral Commodity Summaries, New YorkGoogle Scholar
  2. 2.
    Winkler C (1886) Germanium, Ge, ein neues, nichtmetallisches Element. Ber Dtsch Chem Ges 19:210–211CrossRefGoogle Scholar
  3. 3.
    De A, Pryor CY (2014) Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase. J Phys Condens Matter 26. Art no 045801Google Scholar
  4. 4.
    Fujimoto Y, Koretsune T, Saito S, Miyake T, Oshiyama A (2008) A new crystalline phase of four-fold coordinated silicon and germanium. New J Phys 10:083001CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Zhang XY, Zhang SH, Sun XW, Wang LM, Ma MZ, Liu RP (2014) First-principles investigations on thermodynamic properties of the ordered and disordered Si0. 5Ge0. 5 alloys. Appl Phys A 115:667–670CrossRefGoogle Scholar
  6. 6.
    Zhang YH, Chai CC, Fan QY, Yang YT, Xing MJ (2016) Mechanical and electronic properties of Si–Ge alloy in Cmmm structure. Chin J Phys 54:298–307CrossRefGoogle Scholar
  7. 7.
    Soref RA, Perry CH (1991) Predicted band gap of the new semiconductor SiGeSn. J Appl Phys 69:539–541CrossRefGoogle Scholar
  8. 8.
    Brudevoll T, Citrin DS, Christensen NE, Cardona M (1993) Calculated band structure of zinc-blende-type SnGe. Phys Rev B 48:17128CrossRefGoogle Scholar
  9. 9.
    Bouarissa N, Annane F (2002) Electronic properties and elastic constants of the ordered Ge1−x Snx alloys. Mater Sci Eng B 95:100–106CrossRefGoogle Scholar
  10. 10.
    Jensen RVS, Pedersen TG, Larsen AN (2011) Quasiparticle electronic and optical properties of the Si–Sn system. J Phys: Condens Matter 23:345501Google Scholar
  11. 11.
    Loo R, Vincent B, Gencarelli F, Merckling C, Kumar A, Eneman G, Witters L, Vandervorst W, Caymax M, Heyns M, Thean A (2013) Ge1−xSnx materials: challenges and applications. ECS J Solid State Sci Technol 2:N35–N40CrossRefGoogle Scholar
  12. 12.
    Pulikkotil JJ, Auluck S (2015) Band gap engineering of Si–Ge alloys for mid-temperature thermoelectric applications. AIP Adv 5:037145CrossRefGoogle Scholar
  13. 13.
    Cecchi S, Llin LF, Etzelstorfer T, Samarelli A (2015) Review of thermoelectric characterization techniques suitable for SiGe multilayer structures. Eur Phys J B 88:70CrossRefGoogle Scholar
  14. 14.
    Claudio T, Stein N, Petermann N, Stroppa DG, Koza MM, Wiggers H, Klobes B, Schierning G, Hermann RP (2016) Lattice dynamics and thermoelectric properties of nanocrystalline silicon–germanium alloys. Phys Status Solidi A 213:515–523CrossRefGoogle Scholar
  15. 15.
    Taborda JP, Romero JJ, Abad B, Muñoz-Rojo M, Mello A, Briones F, Gonzalez MM (2016) Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering. Nanotechnology 27:175401CrossRefGoogle Scholar
  16. 16.
    Upadhyaya M, Khatami SN, Aksamija Z (2015) Engineering thermal transport in SiGe-based nanostructures for thermoelectric applications. J Mater Res 30:2649–2662CrossRefGoogle Scholar
  17. 17.
    Vincent B, Shimura Y, Takeuchi S, Nishimura T, Eneman G, Firrincieli A, Demeulemeester J, Vantomme A, Clarysse T, Nakatsuka O, Zaima S, Dekoster J, Caymax M, Loo R (2011) Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors. Microelectron Eng 88:342–346CrossRefGoogle Scholar
  18. 18.
    Saleev VA, Shipilova AV, Proserpio DM, Fadda G (2017) Ab initio study of new sp3 silicon and germanium allotropes predicted from the zeolite topologies. Eur Phys J B 90:150CrossRefGoogle Scholar
  19. 19.
    Wang G, Wu S, Geng ZH, Wang SY, Chen LY, Jia Y (2010) First-principles study on the electronic and optical properties of SnxGe1−x. Opt Commun 283:4307–4309CrossRefGoogle Scholar
  20. 20.
    Zhang XD, Ying CH, Li ZJ, Shi GM (2012) First-principles calculations of structural stability, elastic, dynamical and thermodynamic properties of SiGe, SiSn, GeSn. Superlattices Microstruct 52:459–469CrossRefGoogle Scholar
  21. 21.
    Fan QY, Chai CC, Wei Q, Wong KQ, Liu YQ, Yang YT (2017) Theoretical investigations of group IV alloys in the Lonsdaleite phase. J Mater Sci. Google Scholar
  22. 22.
    Fan QY, Chai CC, Wei Q, Yang Q, Zhou PK, Xing MJ, Yang YT (2016) Mechanical and electronic properties of Si, Ge and their alloys in P42/mnm structure. Mater Sci Semicond Process 43:187–195CrossRefGoogle Scholar
  23. 23.
    Fan QY, Chai CC, Wei Q, Yang Q, Zhou PK, Yang YT (2017) Two novel Ge phases and their Si–Ge alloys with excellent electronic and optical properties. Mater Des 132:539–551CrossRefGoogle Scholar
  24. 24.
    Ma ZY, Liu XH, Yu XH, Shi CL, Yan F (2017) Theoretical investigations of Si–Ge alloys in P42/ncm phase: first-principles calculations. Materials 10:599CrossRefGoogle Scholar
  25. 25.
    Zeng XF, Zhou TW, Leng CQ, Zang ZG, Wang M, Hu W, Tang XS, Lu SR, Fang L, Zhou M (2017) Performance improvement of perovskite solar cell by employing CdSe quantum Dot/PCBM composite as electron transport layer. J Mater Chem A 5:17499–17505CrossRefGoogle Scholar
  26. 26.
    Ye Y, Zang ZG, Zhou TW, Dong F, Lu SR, Tang XS, Wei W, Zhang YB (2018) Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. J Catal 357:100–107CrossRefGoogle Scholar
  27. 27.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864CrossRefGoogle Scholar
  28. 28.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133CrossRefGoogle Scholar
  29. 29.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570Google Scholar
  30. 30.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  32. 32.
    Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-newton method. J Comput Phys 131:233–240CrossRefGoogle Scholar
  33. 33.
    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106CrossRefGoogle Scholar
  34. 34.
    Fan QY, Chai CC, Wei Q, Yang YT (2016) Two novel silicon phases with direct band gaps. Phys Chem Chem8 Phys 18:12905–12913CrossRefGoogle Scholar
  35. 35.
    Baroni S, De Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515CrossRefGoogle Scholar
  36. 36.
    Zhao ZS, Tian F, Dong X, Li Q, Wang QQ, Wang H, Zhong X, Xu B, Yu D, He JL (2012) Tetragonal allotrope of group 14 elements. J Am Chem Soc 134:12362–12365CrossRefGoogle Scholar
  37. 37.
    Lide DR (ed) (1993) Handbook of chemistry and physics: CRC handbook. CRC Press, Boca RatonGoogle Scholar
  38. 38.
    Cohen ER, Taylor BN (1987) The 1986 adjustment of the fundamental physical constants. Rev Mod Phys 59:1121–1148CrossRefGoogle Scholar
  39. 39.
    Wirths S, Buca D, Mantl S (2016) Si–Ge–Sn alloys: from growth to applications. Prog Cryst Growth Charact Mater 62:1–39CrossRefGoogle Scholar
  40. 40.
    Kouvetakis J, Menendez J, Chizmeshya AVG (2006) Tin-based group IV semiconductors: new platforms for opto- and microelectronics on silicon. Annu Rev Mater Res 36:497–554CrossRefGoogle Scholar
  41. 41.
    Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104CrossRefGoogle Scholar
  42. 42.
    Ishii I, Fujiwara T (2002) Electronic structures and cohesion mechanism of Cd-based quasicrystals. J Noncryst Solids 312–314:494–497CrossRefGoogle Scholar
  43. 43.
    Zhao YX, Buehler F, Sites JR, Spain IL (1986) New metastable phases of silicon. Solid State Commun 59:679–682CrossRefGoogle Scholar
  44. 44.
    McMahon MI, Nelmes RJ (1993) New high-pressure phase of Si. Phys Rev B 47:8337–8340CrossRefGoogle Scholar
  45. 45.
    Hanfland M, Schwarz U, Syassen K, Takemura K (1999) Crystal structure of the high-pressure phase Silicon VI. Phys Rev Lett 82:1197–1200CrossRefGoogle Scholar
  46. 46.
    Olijnyk H, Sikka SK, Holzapfel WB (1984) Structural phase transitions in Si and Ge under pressures up to 50 GPa. Phys Lett A 103:137–140CrossRefGoogle Scholar
  47. 47.
    Duclos S, Vohra Y, Ruoff A (1987) hcp to fcc transition in silicon at 78 GPa and studies to 100 GPa. Phys Rev Lett 58:775–777CrossRefGoogle Scholar
  48. 48.
    Crain J, Ackland G, Maclean J, Piltz RO, Hatton PD, Pawley GS (1994) Reversible pressure-induced structural transitions between metastable phases of silicon. Phys Rev B 50:13043–13046CrossRefGoogle Scholar
  49. 49.
    Wentorf RH, Kasper JS (1963) Two new forms of silicon. Science 139:338–339CrossRefGoogle Scholar
  50. 50.
    Wang QQ, Luo K, Ma MD, Yu DL, He JL (2015) A new metastable metallic silicon allotrope. Chin Sci Bull 60:2616–2620 (in Chinese) CrossRefGoogle Scholar
  51. 51.
    Gryko J, McMillan PF, Marzke RF, Ramachandran GK, Patton D, Deb SK, Sankey OF (2000) Low-density framework form of crystalline silicon with a wide optical band gap. Phys Rev B 62:R7707–R7710CrossRefGoogle Scholar
  52. 52.
    Ammar A, Cros C, Pouchard M, Jaussaud N, Bassat JM, Villeneuve G, Duttine M, Ménétrier M, Reny E (2004) On the clathrate form of elemental silicon, Si136: preparation and characterisation of NaxSi136 (x → 0). Solid State Sci 6:393–400CrossRefGoogle Scholar
  53. 53.
    Kim DY, Stefanoski S, Kurakevych OO, Strobel TA (2015) Synthesis of an open-framework allotrope of silicon. Nat Mater 14:169–173CrossRefGoogle Scholar
  54. 54.
    Kurakevych OO, Strobel TA, Kim DY, Muramatsu T, Struzhkin VV (2013) Na-Si clathrates are high-pressure phases: a melt-based route to control stoichiometry and properties. Cryst Growth Des 13:303–307CrossRefGoogle Scholar
  55. 55.
    Yoshikawaa I, Kurosawaa M, Takeuchia W, Sakashitaa M, Nakatsukaa O, Zaima S (2017) Low-temperature crystallization of Ge-rich GeSn layers on Si3N4 substrate. Mater Sci Semicond Process 70:151–155CrossRefGoogle Scholar
  56. 56.
    Gomez-Abal R, Li XZ, Scheffler M (2008) Influence of the core–valence interaction and of the pseudopotential approximation on the electron self-energy in semiconductors. Phys Rev Lett 101:106404CrossRefGoogle Scholar
  57. 57.
    Price DL, Rowe JM, Nicklow RM (1971) Lattice dynamics of grey tin and indium antimonide. Phys Rev B 3:1268–1278CrossRefGoogle Scholar
  58. 58.
    Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504CrossRefGoogle Scholar
  59. 59.
    Marmier A, Lethbridge ZAD, Walton RI, Smith CW, Parker SC, Evans KE (2010) ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181:2102–2115CrossRefGoogle Scholar
  60. 60.
    Hu WC, Liu Y, Li DJ, Zeng XQ, Xu CS (2014) First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf. Comput Mater Sci 83:27–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wei Zhang
    • 1
  • Changchun Chai
    • 1
  • Qingyang Fan
    • 1
  • Kaiqiang Weng
    • 2
  • Yintang Yang
    • 1
  1. 1.Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of MicroelectronicsXidian UniversityXi’anPeople’s Republic of China
  2. 2.Xi’an Institute of Applied OpticsXi’anPeople’s Republic of China

Personalised recommendations