Journal of Materials Science

, Volume 53, Issue 13, pp 9449–9462 | Cite as

Synthesis of manganese oxide electrocatalysts in supercritical carbon dioxide

  • V. V. ZefirovEmail author
  • I. V. Elmanovich
  • E. E. Levin
  • S. S. Abramchuk
  • E. P. Kharitonova
  • A. A. Khokhlov
  • M. S. Kondratenko
  • M. O. Gallyamov
Chemical routes to materials


In this work, a novel method of preparing manganese oxide nanoparticles from an organometallic precursor dissolved in supercritical carbon dioxide (sc CO2) was presented. Using the new approach, nanomaterials mostly consisting of manganese oxides in β-MnO2 and ε-MnO2 phases with small-sized (~ 40 nm) grains and low polydispersity index (~ 0.12) can be synthesized, which was consistently proved by means of thermogravimetric and X-ray diffraction analysis, scanning and transmission electron microscopy. Moreover, reasonable electrocatalytic activity of the obtained materials was detected by a rotating disk electrode method.



The authors are grateful to Professor G.A. Tsirlina from the Lomonosov Moscow State University for her valuable guidance in electrochemical experiments and discussion of the results. Research reported in this publication (in the parts of V.V.Z., S.S.A, M.S.K., M.O.G contributions) was supported by Centre for Electrochemical Energy of Skolkovo Institute of Science and Technology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

10853_2018_2242_MOESM1_ESM.pdf (278 kb)
Supplementary material 1 (PDF 278 kb)


  1. 1.
    Brus L (1991) Quantum crystallites and nonlinear optics. Appl Phys A Solids Surf 53:465–474. CrossRefGoogle Scholar
  2. 2.
    Setter N, Waser R (2000) Electroceramic materials. Acta Mater 48:151–178. CrossRefGoogle Scholar
  3. 3.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203. CrossRefGoogle Scholar
  4. 4.
    Cheng F, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172. CrossRefGoogle Scholar
  5. 5.
    Larminie J, Dicks A (2001) Fuel cell systems explained. Wiley, ChichesterGoogle Scholar
  6. 6.
    Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide “composite” electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267. CrossRefGoogle Scholar
  7. 7.
    Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 48:1015–1021. CrossRefGoogle Scholar
  8. 8.
    Kozawa A, Yeager JF (1965) The cathodic reduction mechanism of electrolytic manganese dioxide in alkaline electrolyte. J Electrochem Soc 112:959–963. CrossRefGoogle Scholar
  9. 9.
    Yang CC, Hsu ST, Chien WC, Shih MC, Chiu SJ, Lee KT, Wang CL (2006) Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons. Int J Hydrog Energy 31:2076–2087. CrossRefGoogle Scholar
  10. 10.
    Poux T, Bonnefont A, Ryabova A, Kéranguéven G, Tsirlina GA, Savinova ER (2014) Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling. Phys Chem Chem Phys 16:13595–13600. CrossRefGoogle Scholar
  11. 11.
    Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci 96:3447–3454. CrossRefGoogle Scholar
  12. 12.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721. CrossRefGoogle Scholar
  13. 13.
    Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2013) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8:1404–1427. CrossRefGoogle Scholar
  14. 14.
    Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3:546–550. CrossRefGoogle Scholar
  15. 15.
    Lima FHB, Calegaro ML, Ticianelli EA (2006) Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J Electroanal Chem 590:152–160. CrossRefGoogle Scholar
  16. 16.
    Ryabova AS, Napolskiy FS, Poux T, Istomin SY, Bonnefont A, Antipin DM, Baranchikov AY, Levin EE, Abakumov AM, Kéranguéven G, Antipov EV, Tsirlina GA, Savinova ER (2016) Rationalizing the influence of the Mn(IV)/Mn(III) red-ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim Acta 187:161–172CrossRefGoogle Scholar
  17. 17.
    Poux T, Napolskiy FS, Dintzer T, Kéranguéven G, Istomin SY, Tsirlina GA, Antipov EV, Savinova ER (2012) Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catal Today 189:83–92. CrossRefGoogle Scholar
  18. 18.
    Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J (2015) Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44:699–728. CrossRefGoogle Scholar
  19. 19.
    Wang X, Li Y (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chem Soc 124:2880–2881. CrossRefGoogle Scholar
  20. 20.
    Wu C, Xie Y, Wang D, Yang J, Li T (2003) Selected-control hydrothermal synthesis of γ-ΜnO2 3D nanostructures. J Phys Chem B 107:13583–13587. CrossRefGoogle Scholar
  21. 21.
    Qiu G, Huang H, Dharmarathna S, Benbow E, Stafford L, Suib SL (2011) Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties. Chem Mater 23:3892–3901. CrossRefGoogle Scholar
  22. 22.
    Zhao J, Tao Z, Liang J, Chen J (2008) Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries. Cryst Growth Des 8:2799–2805. CrossRefGoogle Scholar
  23. 23.
    Wu M-S, Chiang P-CJ, Lee J-T, Lin J-C (2005) Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. J Phys Chem B 109:23279–23284. CrossRefGoogle Scholar
  24. 24.
    Ghaemi M, Khosravi-Fard L, Neshati J (2005) Improved performance of rechargeable alkaline batteries via surfactant-mediated electrosynthesis of MnO2. J Power Sources 141:340–350. CrossRefGoogle Scholar
  25. 25.
    Therese GHA, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12:1195–1204. CrossRefGoogle Scholar
  26. 26.
    Chou S, Cheng F, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources 162:727–734. CrossRefGoogle Scholar
  27. 27.
    Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905. CrossRefGoogle Scholar
  28. 28.
    Li Q, Olson JB, Penner RM (2004) Nanocrystalline α-MnO2 nanowires by electrochemical step-edge decoration. Chem Mater 16:3402–3405. CrossRefGoogle Scholar
  29. 29.
    Ching S, Welch EJ, Hughes SM, Bahadoor ABF, Suib SL (2002) Nonaqueous sol–gel syntheses of microporous manganese oxides. Chem Mater 14:1292–1299. CrossRefGoogle Scholar
  30. 30.
    Portehault D, Cassaignon S, Baudrin E, Jolivet JP (2007) Morphology control of cryptomelane type MnO2 nanowires by soft chemistry growth mechanisms in aqueous medium. Chem Mater 19:5410–5417. CrossRefGoogle Scholar
  31. 31.
    Xiao W, Wang D, Lou XW (2010) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114:1694–1700. CrossRefGoogle Scholar
  32. 32.
    Wang X, Li Y (2002) Rational synthesis of α-MnO2 single-crystal nanorods. Chem Commun 7:764–765. CrossRefGoogle Scholar
  33. 33.
    Oaki Y, Imai H (2007) One-pot synthesis of manganese oxide nanosheets in aqueous solution: chelation-mediated parallel control of reaction and morphology. Angew Chem Int Ed 46:4951–4955. CrossRefGoogle Scholar
  34. 34.
    Portehault D, Cassaignon S, Baudrin E, Jolivet J-P (2009) Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4 /Mn2+ reaction. J Mater Chem 19:2407. CrossRefGoogle Scholar
  35. 35.
    Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J 12:7282–7302. CrossRefGoogle Scholar
  36. 36.
    Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. C R Phys 6:117–131. CrossRefGoogle Scholar
  37. 37.
    Willis AL, Chen Z, He J, Zhu Y, Turro NJ, O’Brien S (2007) Metal acetylacetonates as general precursors for the synthesis of early transition metal oxide nanomaterials. J Nanomater 2007:1–7. CrossRefGoogle Scholar
  38. 38.
    Djerdj I, Arčon D, Jagličić Z, Niederberger M (2007) Nonaqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties. J Phys Chem C 111:3614–3623. CrossRefGoogle Scholar
  39. 39.
    Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol Gel Sci Technol 40:259–266. CrossRefGoogle Scholar
  40. 40.
    Bessergenev VG, Pereira RJF, Botelho do Rego AM (2007) Thin film sulphides and oxides of 3d metals prepared from complex precursors by CVD. Surf Coat Technol 201:9141–9145. CrossRefGoogle Scholar
  41. 41.
    Neishi K, Aki S, Matsumoto K, Sato H, Itoh H, Hosaka S, Koike J (2008) Formation of a manganese oxide barrier layer with thermal chemical vapor deposition for advanced large-scale integrated interconnect structure. Appl Phys Lett 93:2–5. CrossRefGoogle Scholar
  42. 42.
    Nakaso K, Han B, Ahn KH, Choi M, Okuyama K (2003) Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. J Aerosol Sci 34:869–881. CrossRefGoogle Scholar
  43. 43.
    Merritt AR, Rajagopalan R, Carter JD (2014) Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition. Thin Solid Films 556:28–34. CrossRefGoogle Scholar
  44. 44.
    Ju SH, Kim DY, Koo HY, Hong SK, Jo EB, Kang YC (2006) The characteristics of nano-sized manganese oxide particles prepared by spray pyrolysis. J Alloys Compd 425:411–415. CrossRefGoogle Scholar
  45. 45.
    Kondratenko MS, Elmanovich IV, Gallyamov MO (2017) Polymer materials for electrochemical applications: processing in supercritical fluids. J Supercrit Fluids. Google Scholar
  46. 46.
    Smart NG, Carleson T, Kast T, Clifford AA, Burford MD, Wai CM (1997) Solubility of chelating agents and metal-containing compounds in supercritical fluid carbon dioxide. Talanta 44:137–150. CrossRefGoogle Scholar
  47. 47.
    Gupta RB, Shim J-J (2007) Solubility in supercritical carbon dioxide. Taylor & Francis Group, New YorkGoogle Scholar
  48. 48.
    Fedotov AN, Simonov AP, Popov VK, Bagratashvili VN (1997) Dielectrometry in supercritical fluids. a new approach to the measurement of solubility and study of dipole moment behavior of polar compounds. J Phys Chem B 102:2929–2932. CrossRefGoogle Scholar
  49. 49.
    Bayrakceken A, Kitkamthorn U, Aindow M, Erkey C (2007) Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamic control of metal loading. Scr Mater 56:101–103. CrossRefGoogle Scholar
  50. 50.
    Zhang Y, Kang D, Saquing C, Aindow M, Erkey C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44:4161–4164. CrossRefGoogle Scholar
  51. 51.
    Zhang Y, Erkey C (2006) Preparation of supported metallic nanoparticles using supercritical fluids: a review. J Supercrit Fluids 38:252–267. CrossRefGoogle Scholar
  52. 52.
    Said-Galiyev EE, Nikolaev AY, Levin EE, Lavrentyeva EK, Gallyamov MO, Polyakov SN, Tsirlina GA, Petrii OA, Khokhlov AR (2011) Structural and electrocatalytic features of Pt/C catalysts fabricated in supercritical carbon dioxide. J Solid State Electrochem 15:623–633. CrossRefGoogle Scholar
  53. 53.
    Layfield RA (2008) Manganese (II): the black sheep of the organometallic family. Chem Soc Rev 37:1098–1107. CrossRefGoogle Scholar
  54. 54.
    Saito N, Ikushima Y, Goto T (1990) Liquid/solid extraction of acetylacetone chelates with supercritical carbon dioxide. Bull Chem Soc Jpn 63:1532–1534. CrossRefGoogle Scholar
  55. 55.
    Khatipov SA, Serov SA, Sadovskaya NV, Konova EM (2012) Morphology of polytetrafluoroethylene before and after irradiation. Radiat Phys Chem 81:256–263. CrossRefGoogle Scholar
  56. 56.
  57. 57.
    Parida KM, Kanungo SB (1983) Thermal decomposition characteristics in air and their relationship with electrochemical activity of different polymorphic forms of MnO2. Thermochim Acta 66:275–287. CrossRefGoogle Scholar
  58. 58.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. CrossRefGoogle Scholar
  59. 59.
    Hackley VA, Clogston JD (2011) Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Humana Press, New York, pp 35–52. CrossRefGoogle Scholar
  60. 60.
    Levin E, Treninkov I, Polyakov S (2011) Moving crystal assembly for handling small bulk samples. J Appl Crystallogr 44:1291–1293. CrossRefGoogle Scholar
  61. 61.
  62. 62.
    Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. CrossRefGoogle Scholar
  63. 63.
    Solovyov LA (2004) Full-profile refinement by derivative difference minimization. J Appl Crystallogr 37:743–749. CrossRefGoogle Scholar
  64. 64.
    Suntivich J, Gasteiger HA, Yabuuchi N, Shao-Horn Y (2010) electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J Electrochem Soc 157:B1263–B1268. CrossRefGoogle Scholar
  65. 65.
    Allen T (2003) Powder sampling and particle size determination. Elsevier, AmsterdamGoogle Scholar
  66. 66.
    Geller S (1971) Structure of α-Mn2O3, (Mn0.983Fe0.017)2O3 and (Mn0.37Fe0.63)2O3 and relation to magnetic ordering. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 27:821–828. CrossRefGoogle Scholar
  67. 67.
    Stoerzinger KA, Risch M, Han B, Shao-Horn Y (2015) Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal 5:6021–6031. CrossRefGoogle Scholar
  68. 68.
    Wang X, Yang Z, Zhang Y, Jing L, Zhao Y, Yan Y, Sun K (2014) MnO2 supported Pt nanoparticels with high electrocatalytic activity for oxygen reduction reaction. Fuel Cells 14:35–41. Google Scholar
  69. 69.
    Zhao JC, Wang J, Xu JL (2015) Synthesis and electrochemical characterization of mesoporous MnO2. J Chem 2015:1–6. Google Scholar
  70. 70.
    Kéranguéven G, Ulhaq-Bouillet C, Papaefthimiou V, Royer S, Savinova E (2017) Perovskite-carbon composites synthesized through in situ autocombustion for the oxygen reduction reaction: the carbon effect. Electrochim Acta 245:156–164. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Physics and Faculty of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations